I. Brahmankar DM and
Jaisal, S.B. Biopharmaceutics and Pharmacokinetics-A treatise’. Delhi: Vallabh
Prakasan; 2009
II. Yvonne Perrie and
Thomas Rades Pharmaceutics. Drug delivery & targeting. London:
Pharmaceutical Press;2010
III. Prateek Mathur,
Swati Jha, Suman Ramteke and N.K. Jain. Pharmaceutical aspects of silver
nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology an
International Journal.2018. ISSN:2169-40.
IV. M.Sakamoto, M.
Fujistuka, and T. Majima, Light as a construction tool of metal nanoparticles:
synthesis and mechanism journal of photochemistry and photobiology C:
Photochemistry Reviews, Vol. 1, pp.33-56,2009
V.
Hayelom Dargo
Beyenea, Adhena Ayaliew Werkneh, Hailemarim Kassa Bezabha,
TekilyGebregergAmbaye. Synthesis paeadigm and application of silver
nanoparticles (AgNPs), review. Sustainable Materials and Technologies 13 (2017)
18-23.
VI.
AchmadSyafiuddin,
Salmiati, MohdRazman Salim, Ahmad Beng Hong Kueh, Tony, Global Consumption,
Synthesis, Properties, and Future Challenges.In journal-Chinese Chemical
Society Taipei July 2017. DOI: 10.1002/jccs.201700067
VII. Z. Zheng, W. Yin,
J. N. Zara et al; The use of BMP -2 coupled nanosilver-PLGA composite, vol. 31,
no. 35, pp. 9293-9300, 2010.
VIII.
P. L. Nadworny,J.
wang ,E.E Tredget, and R. E. Burrell, Antiinflammatory activity of
nanocrystalline silver in a porcine contact dermatitis model nanomedicine :
nanotechnology ,biology ,and Medicine ,vol.4, no. 3pp. 241- 251, 2008.
IX.
C.-N. Lok, C -.
m. Ho,R. Chen et al ; Silver nanoparticels : partial Oxidation and
antibacterial activities , Journal of Biological Inorganic Chemistry ,vol. 12,
no. 4, pp527-534,2007.
X. This lesson
corresponds to the wed lesson of the same name. Introduction to Inflammation.
XI. Siddiqi et al. A
review on biosynthesis of silver nanoparticles of silver nanoparticles and
their biocidal properties. J Nanobiotechnol (2018) 16: 14https ://doi.org/
10.1186/s12951-018-0334-5.
XII. Klaus T, Joerger
R, Olsson E, Granqvist CG. Silver –
based crystalline nanoparticles, microbially. ProcNatlAcadSci USA. 1999;96:
13611-4.
XIII. Duran N, Priscyla
D, Marcato PD, Alves O, De souza G, Esposito E. Mechanistic aspects of
biosynthesis of silver nanoparticles by several Fusariumoxysporumstrain. J
nanobiotechnology. 2005; 3: 1-7.
XIV.
Husen A. Gold
Nanoparticles from plant system:
synthesis, Characterization and their application. In: Ghorbanpourn M,
Manika K, Varma A, editors. Nanoscience and plant – soil systems, vol. 48.
Cham: Springer International Publication; 2017. P.455-79.
XV.
Iravani, S;
korbekandi, H; Mirmohanmmadi, S.V; Zolfaghari, B. Synthesis of silver
nanoparticles: Chemical, Physical and biological methods. Res. Pharm. sci.
2014, 385- 406. [PubMed].
XVI. S. Iravani, H.
Korbekandi, S. V. Mirmohammadi, B. Zolfaghari, Synthesis of silver
nanoparticles: chemical, physical and biological methods, Research in
Pharmaceutical Sciences9(2014) 385-406.
XVII. F.s. al-
Mubaddal,s. Haider, W.A. AI- Masry , Y. AI -Zeghayer, M. Imran , A. Haider, Z.
Ullah, Engineered nanostructures;:a review of their synthesis, characterization
,and toxic hazard consideration ,Arab. J Chem .09(2012) 10.
XVIII.
R. Veersamy, T.
Z. Xin, S. Gunasagaran T.F. W. Xiang, E.F.C. Yang, N. Jeyakumar, S.A. Dhanraj,
Biosynthesis of silver nanoparticles using mangosteen leaf extract and
evaluation of their antimicrobial activities, J Saudi Chem. Soc. 15(2011)
113-120
XIX.
Hayelom Dargo
Beyenea, Adhena AyaliewWerknehb, Hailemariam Kassa Bezabha, TekiltGebregergs
Ambayec. Synthsis paradigm and application of silver nanoparticles (AgnPs) a,
review. Sustainable Materials and Technologies 13(20170 18-23.
XX.
A. J. Christy and
M. umadevi, Synthesis and characterization of monodispersed silver
nanoparticles Advances in Natural sciences: Nanoscience and Nanotechnology,
vol. 3, no.3, Article ID 035013, 4 pages, 2012.
XXI. Kholoud M.M. Abou
El- nour, Ala’a Eftaiha, Abdulrhman Al – Warthanb, Reda A.A.Ammar. synthesis
and application of silver nanoparticles. Arabin Journal of Chemical (2010)3,
135-140.
XXII. J. Natsuki, T.
Natsuki, T.Abe, Low molecular weight compound as effective dispersing agents in
the formation of colloidal silver nanoparticles J. Nanopart. Res. Vol. 15. Pp.
1483- 1-8, 2013.
XXIII. Lopez- esparza,
J; Espinosa- Crist6bal, L.F; Donohue- Cornjo, A; Reyes- Loez, S>Y
Antimicrobial activity of silver nanoparticles in polycaprolactonano fibers
againt gram positive and gram-negative bacteria. Ind.Eng. Chem. Res> 2016,
55, 12532-12538.
XXIV. Izak-Nau, E;
Huk,A; Reidy ,B; Uggerud H; Vadset, M ; Eiden, S; Voetz, M; Himly ,M; Dusnska,
Met al. Impact of storage conditions and
storage time on silver nanoparticles Physicochemical Properties and implication
for their biological effects .RSC Adv . 2015, 5, 84185.
XXV. Majeed, s;
Danish, M; BintiZahrudin, A.H; Dash, G.K. Biosynthesis and characterization of
silver nanoparticles from fungal species and its antibacterical and anticancer
effect. Karbala Int.J. Mod.sci.2018, 4, 86-92.
XXVI. Ramezanpour, M;
Leung, S.S W; Delgado- Magnero, K.H; Bashe ,B.Y.M ; Thewalt J; Tieleman , D.P Comutational and
exaerimental approaches for investigating nanoparticle- based drug delivery
systems . Biochim. Biochim. Acta (BBA) Biomembr. 2016, 1858,1688-1709.
XXVII.
Tahseen, Q.A.
Silver Nanoparticles as Drug Delivery Systems. Ph. D. Dissertations, Louisiana
State University, Baton Rouge, LA, USA, 2013.
XXVIII. Thomas, R.;
Mathew, S.; Nayana, A.R.; Mathews, J.; Radhakrishnam, E.K. Microbially and
phyto-fabricated agnps with different mode of bactericidal action were
identified to have comparable potential for surface fabrication of central
venous catheters to combat staphylococcus aureus biofilm. J. Photochem.
Photobiol. B Biol.2017, 171, 29-103.
XXIX. Divakar, D.D.;
Jastaniyah, N.T.; Altamimi, H.G.; Alnakhli, Y.O.; Muzaheed; Alkheraif, A.A.;
Haleem, S. Enhanced antimictobial activity of naturally derived bioactive
molecule chitosan conjugated silver nanoparticle against dental impant
pathogens. Int. J. Biol. Macromal. 2018, 108, 790-797.
XXX. Correia, T.R.; Figueira,
D.R.; de Sa, K.D.; Miguel, S.P.; Fradique, R.G.; Mendonca, A.G.; Correia, I.J.
3D print scaffolds with bactericidal activity aimed for bone tissue
regeneration. Int. J. Biol. Macromol. 2016, 93, 1432-1445.
XXXI. Wilkinson, L.J.;
White, R.J.; Chipman, J.K. Silver and nanoparticles of silver in wound
dressings: A review of efficacy and safety. J. Wound Care 2011, 20, 254-549.
XXXII. You, C.; Li, Q.;
Wang, X.; Wu, P.; Ho, J.K.; Jin, R.; Zhang, L.; Shao, H.; Han, C. Silver
nanoparticle loaded collagen/chitosan scaffolds promote wound healing via
regulating fibroblast migration and macrophage activation. Sci. Rep. 2017, 7,
10489.
XXXIII. Rai, M.; Kon.;
Ingle, A.; Duran, N; Galdiero, S.; Galdiero, M. Broad-spectrum bioactivities of
silver nanoparticles: The emerging trends and further prospects. Appl.
Microbiol. Biotechnol. 2014, 989, 1951-1961.
[1] S.
Kittler, C. Greulich, J. Diendorf, M. Koller, M. Epple, Toxicity of silver
nanoparticles increases during storage because of slow dissolution under
release of silver ions, Chem. Mater. 22(2010) 4548-4554