Abstract View

Author(s): Komal Bhau Patil *1, Momin Abrarul Haque2, Bhaminee Madhukar Patil3, Sanika Naresh Gaikwad4, Tanmayi Bharat Shinde5, Mohd. Salman.6

Email(s): Email ID Not Available

Address:

    M. S. College of Pharmacy, Gaurapur-Kudus Rd, Dist. Palghar, Maharashtra 421312.

Published In:   Volume - 2,      Issue - 5,     Year - 2023

DOI: Not Available

 View HTML        View PDF

Please allow Pop-Up for this website to view PDF file.

ABSTRACT:
Nanoparticles are small, non-biodegradable polymers with a diameter of 1 nm to 1000 nm. They have a large surface area and high surface-to-mass ratio, making them suitable for binding, adsorption, and carrying drugs, probes, and proteins. Nanoparticle carrier systems allow for entrapment or encapsulation of the body over a specified treatment period. There are two main classes: soluble carrier systems, where the drug is conjugated to the carrier, and particular carrier systems, where the drug is surface-bound or entrapped within the carrier.

Cite this article:
Komal Bhau Patil, Momin Abrarul Haque, Bhaminee Madhukar Patil, Sanika Naresh Gaikwad, Tanmayi Bharat Shinde, Mohd. Salman. Review on Silver Nanoparticles. IJRPAS, Sep-Oct 2023; 2(5): 118-129.


        I.          Brahmankar DM and Jaisal, S.B. Biopharmaceutics and Pharmacokinetics-A treatise’. Delhi: Vallabh Prakasan; 2009

     II.         Yvonne Perrie and Thomas Rades Pharmaceutics. Drug delivery & targeting. London: Pharmaceutical Press;2010

  III.           Prateek Mathur, Swati Jha, Suman Ramteke and N.K. Jain. Pharmaceutical aspects of silver nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology an International Journal.2018. ISSN:2169-40.

  IV.      M.Sakamoto, M. Fujistuka, and T. Majima, Light as a construction tool of metal nanoparticles: synthesis and mechanism journal of photochemistry and photobiology C: Photochemistry Reviews, Vol. 1, pp.33-56,2009

    V.             Hayelom Dargo Beyenea, Adhena Ayaliew Werkneh, Hailemarim Kassa Bezabha, TekilyGebregergAmbaye. Synthesis paeadigm and application of silver nanoparticles (AgNPs), review. Sustainable Materials and Technologies 13 (2017) 18-23.

  VI.            AchmadSyafiuddin, Salmiati, MohdRazman Salim, Ahmad Beng Hong Kueh, Tony, Global Consumption, Synthesis, Properties, and Future Challenges.In journal-Chinese Chemical Society Taipei July 2017. DOI: 10.1002/jccs.201700067

VII.           Z. Zheng, W. Yin, J. N. Zara et al; The use of BMP -2 coupled nanosilver-PLGA composite, vol. 31, no. 35, pp. 9293-9300, 2010.

VIII.             P. L. Nadworny,J. wang ,E.E Tredget, and R. E. Burrell, Antiinflammatory activity of nanocrystalline silver in a porcine contact dermatitis model nanomedicine : nanotechnology ,biology ,and Medicine ,vol.4, no. 3pp. 241- 251, 2008.

  IX.            C.-N. Lok, C -. m. Ho,R. Chen et al ; Silver nanoparticels : partial Oxidation and antibacterial activities , Journal of Biological Inorganic Chemistry ,vol. 12, no. 4, pp527-534,2007.

    X.           This lesson corresponds to the wed lesson of the same name. Introduction to Inflammation.

  XI.            Siddiqi et al. A review on biosynthesis of silver nanoparticles of silver nanoparticles and their biocidal properties. J Nanobiotechnol (2018) 16: 14https ://doi.org/ 10.1186/s12951-018-0334-5.

XII.           Klaus T, Joerger R, Olsson E, Granqvist CG.  Silver – based crystalline nanoparticles, microbially. ProcNatlAcadSci USA. 1999;96: 13611-4.

XIII.           Duran N, Priscyla D, Marcato PD, Alves O, De souza G, Esposito E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusariumoxysporumstrain. J nanobiotechnology. 2005; 3: 1-7.

XIV.            Husen A. Gold Nanoparticles from plant system:  synthesis, Characterization and their application. In: Ghorbanpourn M, Manika K, Varma A, editors. Nanoscience and plant – soil systems, vol. 48. Cham: Springer International Publication; 2017. P.455-79.    

XV.             Iravani, S; korbekandi, H; Mirmohanmmadi, S.V; Zolfaghari, B. Synthesis of silver nanoparticles: Chemical, Physical and biological methods. Res. Pharm. sci. 2014, 385- 406. [PubMed].

XVI.           S. Iravani, H. Korbekandi, S. V. Mirmohammadi, B. Zolfaghari, Synthesis of silver nanoparticles: chemical, physical and biological methods, Research in Pharmaceutical Sciences9(2014) 385-406.

XVII.            F.s. al- Mubaddal,s. Haider, W.A. AI- Masry , Y. AI -Zeghayer, M. Imran , A. Haider, Z. Ullah, Engineered nanostructures;:a review of their synthesis, characterization ,and toxic hazard consideration ,Arab. J Chem .09(2012) 10.

XVIII.             R. Veersamy, T. Z. Xin, S. Gunasagaran T.F. W. Xiang, E.F.C. Yang, N. Jeyakumar, S.A. Dhanraj, Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities, J Saudi Chem. Soc. 15(2011) 113-120 

XIX.             Hayelom Dargo Beyenea, Adhena AyaliewWerknehb, Hailemariam Kassa Bezabha, TekiltGebregergs Ambayec. Synthsis paradigm and application of silver nanoparticles (AgnPs) a, review. Sustainable Materials and Technologies 13(20170 18-23.

XX.            A. J. Christy and M. umadevi, Synthesis and characterization of monodispersed silver nanoparticles Advances in Natural sciences: Nanoscience and Nanotechnology, vol. 3, no.3, Article ID 035013, 4 pages, 2012.

XXI.      Kholoud M.M. Abou El- nour, Ala’a Eftaiha, Abdulrhman Al – Warthanb, Reda A.A.Ammar. synthesis and application of silver nanoparticles. Arabin Journal of Chemical (2010)3, 135-140.

XXII.          J. Natsuki, T. Natsuki, T.Abe, Low molecular weight compound as effective dispersing agents in the formation of colloidal silver nanoparticles J. Nanopart. Res. Vol. 15. Pp. 1483- 1-8, 2013.

XXIII.            Lopez- esparza, J; Espinosa- Crist6bal, L.F; Donohue- Cornjo, A; Reyes- Loez, S>Y Antimicrobial activity of silver nanoparticles in polycaprolactonano fibers againt gram positive and gram-negative bacteria. Ind.Eng. Chem. Res> 2016, 55, 12532-12538.

XXIV.       Izak-Nau, E; Huk,A; Reidy ,B; Uggerud H; Vadset, M ; Eiden, S; Voetz, M; Himly ,M; Dusnska, Met al. Impact of storage  conditions and storage time on silver nanoparticles Physicochemical Properties and implication for their biological effects .RSC Adv . 2015, 5, 84185.

XXV.         Majeed, s; Danish, M; BintiZahrudin, A.H; Dash, G.K. Biosynthesis and characterization of silver nanoparticles from fungal species and its antibacterical and anticancer effect. Karbala Int.J. Mod.sci.2018, 4, 86-92.

XXVI.         Ramezanpour, M; Leung, S.S W; Delgado- Magnero, K.H; Bashe ,B.Y.M ; Thewalt  J; Tieleman , D.P Comutational and exaerimental approaches for investigating nanoparticle- based drug delivery systems . Biochim. Biochim. Acta (BBA) Biomembr. 2016, 1858,1688-1709.

XXVII.            Tahseen, Q.A. Silver Nanoparticles as Drug Delivery Systems. Ph. D. Dissertations, Louisiana State University, Baton Rouge, LA, USA, 2013.

XXVIII.           Thomas, R.; Mathew, S.; Nayana, A.R.; Mathews, J.; Radhakrishnam, E.K. Microbially and phyto-fabricated agnps with different mode of bactericidal action were identified to have comparable potential for surface fabrication of central venous catheters to combat staphylococcus aureus biofilm. J. Photochem. Photobiol. B Biol.2017, 171, 29-103.

XXIX.            Divakar, D.D.; Jastaniyah, N.T.; Altamimi, H.G.; Alnakhli, Y.O.; Muzaheed; Alkheraif, A.A.; Haleem, S. Enhanced antimictobial activity of naturally derived bioactive molecule chitosan conjugated silver nanoparticle against dental impant pathogens. Int. J. Biol. Macromal. 2018, 108, 790-797.

XXX.     Correia, T.R.; Figueira, D.R.; de Sa, K.D.; Miguel, S.P.; Fradique, R.G.; Mendonca, A.G.; Correia, I.J. 3D print scaffolds with bactericidal activity aimed for bone tissue regeneration. Int. J. Biol. Macromol. 2016, 93, 1432-1445.

XXXI.        Wilkinson, L.J.; White, R.J.; Chipman, J.K. Silver and nanoparticles of silver in wound dressings: A review of efficacy and safety. J. Wound Care 2011, 20, 254-549.

XXXII.        You, C.; Li, Q.; Wang, X.; Wu, P.; Ho, J.K.; Jin, R.; Zhang, L.; Shao, H.; Han, C. Silver nanoparticle loaded collagen/chitosan scaffolds promote wound healing via regulating fibroblast migration and macrophage activation. Sci. Rep. 2017, 7, 10489.

XXXIII.      Rai, M.; Kon.; Ingle, A.; Duran, N; Galdiero, S.; Galdiero, M. Broad-spectrum bioactivities of silver nanoparticles: The emerging trends and further prospects. Appl. Microbiol. Biotechnol. 2014, 989, 1951-1961.

[1] S. Kittler, C. Greulich, J. Diendorf, M. Koller, M. Epple, Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions, Chem. Mater. 22(2010) 4548-4554

Related Images:



Recent Images



A Review of Current Formulation Trends and Technological Advancements
Natural solution for Alopacia: A review of Herbal Stimulants for Hair Growth and Hair Fall
Edible Insect and Their Future in India
Formulation and Evaluation of Gastroretentive Floating Microspheres of Labetalol Hydrochloride
Analysis of High Incidences and Etiological Factors of Tuberculosis in the Region of Malegaon: An Observational Study
Comprehensive Phytochemical Screening and Quantification of Bioactive Compounds in Ziziphus spina-christi for Herbal Cosmetics
Evaluation of Anti-Ulcer Activity of Chloroform and Alcoholic Extracts of Leaves of Mimusops elengi
Disease Caused by Heavy Metals and Dust: A Review
Respiratory Problems Caused Due to Heavy Metals and Dust
Neurological Complications among Pregnant and Post Partum Mothers in a Private Hospital, Yogyakarta, Indonesia

Tags