1. Ghosh,
P., Dey, S. K., Ara, M. H., Karim, K., and Islam, A. B. M. (2019). A review on
synthesis and versatile applications of some selected Schiff bases with their
transition metal complexes. Egyptian Journal of Chemistry, 62(2), 523-547. https://dx.doi.org/10.21608/ejchem.2019.13741.1852
2. Mighani,
H. (2020). Schiff Base Polymers: Synthesis and Characterization. Journal of
Polymer Resources, 27(6).
3. Al Zoubi
W., Al-Hamdani A. A. S. and Ko Y. G. (2017). Schiff bases and their Complexes:
Recent Progress in Thermal Analysis. Sep.
Sci. Technol., 52(6), 1052-1069.
https://doi.org/10.1080/01496395.2016.1267756
4. Tareq,
M. A., Mohammad, E., Zaid, H. O. Taher, S. A., Suha, S. A., Mazhar, S. A., …
and Taghreed, M. A. (2022). Synthesis, Characterization, Computational and
Biological Activity of Some Schiff Bases and Their Fe, Cu and Zn Complexes.
Journal of inorganics, 10, 1-15.
5.
Mahmoud, W. A.,
Hassan, Z. M. and Ali, R. W. (2020). Synthesis and Spectral Analysis of some
Metal Complexes with Mixed Schiff Base Ligands 1-[2-(2-
hydroxybenzylideneamino)ethyl]pyrrolidine-2,5-dione (HL1) and
(2-hydroxybenzalidine)glycine (HL2). Journal of Physics, Conference
Series, 1660-012027. DOI:10.1088/1742-6596/1660/1/012027
6.
Charde M. S., Shukla A., Bukhariya V. and
Chakole R. D. (2012). A review on: a significance of microwave assist technique
in green chemistry. International Journal of Phytopharmacy; 2(2), 39-50. DOI: https://doi.org/10.7439/ijpp.v2i2.441
7.
Li Z., Zhuang T.,
Dong J., Wang L., Xia J., Wang H., Cui X. and Wang Z. (2021). Sonochemical
fabrication of inorganic nanoparticles for applications in catalysis.
Ultrasonics Sonochemistry Journal, 71, 105384. https://doi.org/10.1016/j.ultsonch.2020.105384
8. Do, J.
L., and Friščić, T. (2017). Mechanochemistry: A Force of Synthesis. ACS Central
Science, 3(1), 13–19.
https://doi.org/10.1021/acscentsci.6b00277
9. Abd
El-Wahab, H., Abd El-Fattah, M., El-Alfy, H. M. Z., Owda, M. E., Lin, L., and
Hamdy, I. (2020). Synthesis and characterization of sulphonamide (Schiff base)
ligand and its copper metal complex and their efficiency in polyurethane
varnish as flame retardant and antimicrobial surface coating additives. Progress
in Organic Coatings, 142, 105577.
https://doi.org/10.1016/j.porgcoat.2020.105577
10. Sani, S.
and Siraj, I. T. (2020). Mechanochemical Synthesis, Characterization, Thermal
Analysis and Antimicrobial Studies Co (II) Schiff base complexes. Nigerian
Research Journal of Chemical Sciences, 8(1),
265-275.
11. Mohammed H. S. (2016). Synthesis and
Characterization of new Schiff Bases Ligand and Their Complexes with Some
Transition Metals. International Journal of Chem. Tech Research, 9(10),
111-117.
12. Uba, B.,
Muhammad, C., Uba, A., and Muhammad, A. A. (2021). Synthesis, Gravimetric
Analysis and Antimicrobial studies of Transition metals (Cu(II), Zn(II))
complexes of Schiff derived from 2-hydroxy-1-naphthaldehyde and
2-amino-3-methylpyridine. Fudma Journal of Sciences, 5(4), 251-259. https://doi.org/10.33003/fjs-2021-0504-812
13. Balan,
K., Ratha, P., Prakash, G., Viswanathamurthi, P., Adisakwattana, S., and
Palvannan, T. (2017). Evaluation of in-vitro a-amylase and a-glucosidase
inhibitory potential of N2O2 Schiff base Zn complex.
Arabian Journal of Chemistry, 10,
732–738. https://doi.org/10.1016/j.arabjc.2014.07.002
14. Majeed,
R. H. A., Hussein, H. A., and Abdullah, M. A. (2022). Preparation and
characterization of Novel Schiff Base Derived from 4-Nitro Benzaldehyde and its
Cytotoxic Activities. International Journal of Molecular and Cellular Medicine,
11(4), 285.
doi: 10.22088/IJMCM.BUMS.11.4.285
15. Neelofar,
N., Ali, N., Khan, A., Amir, S., Khan, N. A., and Bilal, M. (2017). Synthesis
of Schiff bases derived from 2-hydroxy-1-naphth-aldehyde and their tin (II)
complexes for antimicrobial and antioxidant activities. Bulletin of the Chemical Society of Ethiopia, 31(3),
445-456. DOI: 10.4314/bcse.v31i3.8
16. Bhaskar,
R.S., Ladole, C.A., Salunkhe, N.G., Barabde, J.M., Aswar, A.S., (2020).
Synthesis, characterization and antimicrobial studies of novel ONO donor
hydrazone Schiff base complexes with some divalent metal (II) ions. Arabian
Journal of Chemistry, 13, 6559–6567.
https://doi.org/10.1016/j.arabjc.2020.06.012
17. Farhan,
M. A., Ali, W. B. and Nief, O. A. (2022). Synthesis, Characterization and
Biological Activity of Schiff Bases Derived from Heterocyclic Compounds. Teikyo
Medical Journal, 45(1), 4781-4790.
18. Al-Adilee,
K. J., and Hasan, S. R. (2021). Synthesis, Characterization and Biological
Activity of Heterocyclic Azo-Schiff Base Ligand derived from 2-Amino-5-methyl
thiazol and some Transition Metal Ions. In IOP Conference Series: Earth and
Environmental Science, 790(1),
012031. DOI:10.1088/1755-1315/790/1/012031
19. Alhakimi,
A. N., Shakdofa, M. M. E., Saeed, S., Shakdofa, A. M. E., Al-Fakeh, M. S.,
Abdu, A. M., Alhagri, I. A., (2021). Transition metal complexes derived from
2-hydroxy-4-(p-tolyldiazenyl) benzylidene)-2-(p-tolylamino) acetohydrazide
synthesis, structural characterization and biological activities. Journal of
Korean Chemical Society, 65, 93–105.
DOI:10.5012/jkcs.2021.65.2.93
20. Deepika,
E., Santhy, K. S. (2022). In vitro Antioxidant and Antidiabetic activity of
Silver Nanoparticles. Research Journal of Pharmacy and Technology, 15(3) 989-997.
DOI:10.52711/0974-360X.2022.00165