Abstract View

Author(s): Rutuja R. Kamble1, * Sanika S. Varale2, Hrushikesh D. Sajanikar3, Shivani S. Kavale4, Sheetal K. Kamble5, Shoan V. Mane6

Email(s): 1rutujak725@gmail.com

Address:

    Y. D. Mane Institute of Pharmacy, Kagal 416 216, Maharashtra, India

Published In:   Volume - 4,      Issue - 10,     Year - 2025

DOI: https://doi.org/10.71431/IJRPAS.2025.41002  

 View HTML        View PDF

Please allow Pop-Up for this website to view PDF file.

ABSTRACT:
Artificial intelligence (AI) has emerged as a transformative force in pharmaceutical research, revolutionizing the traditional process of drug discovery and development. Conventional methods are lengthy, costly, and prone to high failure rates, whereas AI provides a faster, data-driven, and more efficient alternative. Through techniques such as machine learning, deep learning, and predictive analytics, AI accelerates target identification, molecular design, and lead optimization while improving safety assessments and clinical trial efficiency. Current innovations, including protein structure prediction, generative AI models, and integration of multi-omics data, are reshaping modern drug discovery by enabling the development of novel and precise therapeutics. Moreover, AI contributes to post-market surveillance by detecting adverse reactions and ensuring ongoing drug safety. Despite its remarkable potential, several challenges persist, including data quality and standardization issues, limited model interpretability, regulatory uncertainty, and ethical considerations. Addressing these barriers requires collaboration between researchers, regulators, and technology experts to ensure transparency, reproducibility, and responsible implementation. Looking ahead, the integration of AI with quantum computing, systems biology, and personalized medicine is expected to significantly enhance innovation, reduce development timelines, and increase the overall success rate of new drugs. Ultimately, AI is paving the way for a new era of intelligent, efficient, and patient-centered pharmaceutical discovery.

Cite this article:
Rutuja R. Kamble, Sanika S. Varale, Hrushikesh D. Sajanikar, Shivani S. Kavale, Sheetal K. Kamble, Shoan V. Mane. AI and The Future of Drug Discovery: From Innovation to Implementation. IJRPAS, October 2025; 4(10): 6-25.DOI: https://doi.org/https://doi.org/10.71431/IJRPAS.2025.41002


1.      Russell S, Norvig P. Artificial Intelligence: A Modern Approach. 4th ed. Pearson Education; 2021.

2.      Kaplan A, Haenlein M. Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons. 2019; 62(1):15–25. Doi:10.1016/j.bushor.2018.08.00

3.      Mak KK, Pichika MR. Artificial intelligence in drug development: Present status and future prospects. Drug Discovery Today. 2019; 24(3):773–780. doi:10.1016/j.drudis.2018.11.014

4.      Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL. How to improve R&D productivity: The pharmaceutical industry's grand challenge. Nat Rev Drug Discovery. 2010; 9(3):203–214. doi:10.1038/nrd3078

5.      Schneider G, Clark DE. Automated de novo drug design: Are we nearly there yet?                                                                  Angew Chem Int Ed Engl. 2019; 58(32):10792–10803. doi:10.1002/anie.201814843

6.      Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with alphaFold. Nature. 2021; 596(7873):583–589. doi:10.1038/s41586-021-03819-2

7.      Vamathevan, J., Clark, D., Czodrowski, P. et al. (2019). Applications of machine learning in drug discovery and development. Nature Reviews Drug Discovery, 18(6), 463–477. https://doi.org/10.1038/s41573-019-0024-5

8.      McNair D, Young M, Annetta M. Artificial intelligence and machine learning for lead-to-candidate decision-making and beyond. Annu Rev Pharmacol Toxicol. 2022;62:xxx–xxx. Doi:10.1146/annurev-pharmtox-051921-023255.

9.      Subramanian, A., Narayan, R., Corsello, S. M., Peck, D. D., Natoli, T. E., Lu, X., ... & Golub, T. R. (2017). A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell, 171(6), 1437–1452.e17. https://doi.org/10.1016/j.cell.2017.10.049

10.  Freshour, S. L., Kiwala, S., Cotto, K. C., Coffman, A. C., McMichael, J. F., Song, J. J., ... & Griffith, M. (2021). Integration of the Drug–Gene Interaction Database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Research, 49(D1), D1144–D1151. https://doi.org/10.1093/nar/gkaa1084

11.  Priyakumar UD, Deshpande S, Joshi R, Sonavane U, Dandekar P. Applications of machine learning in computer-aided drug discovery. WIREs Comput Mol Sci. 2022;12(6):e1581. doi:10.1002/wcms.1581

12.  Ramsundar B, Liu B, Wu Z, Verras A, Tudor M, Feinberg EN, et al. Deep Learning for the Life Sciences: Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More. 1st ed. Sebastopol (CA): O’Reilly Media; 2019.

13.  Pillai, N., Abos, A., Teutonico, D., & Mavroudis, P. D. M. (2024). Machine learning framework to predict pharmacokinetic profile of small molecule drugs based on chemical structure. Clinical and Translational Science

14.  Brown, N., Fiscato, M., Segler, M. H. S., & Vaucher, A. C. (2019).

15.  GuacaMol: Benchmarking Models for de Novo Molecular Design.

16.  Journal of Chemical Information and Modeling, 59(3), 1096–1108.

17.  Xia, Y., Wang, Y., & Zhang, W. (2024). A comprehensive review of molecular optimization in artificial intelligence based drug discovery. Quantitative Biology, 12(1), 15-42.https://doi.org/10.1002/qub2.30

18.  Ekins, S. et al. "Machine learning models and pathway prediction for ADMET." Nature Reviews Drug Discovery, 18(11), 696–714 (2019).

19.  DOI: 10.1038/s41573-019-0024-5

20.  Segler, M.H.S., Preuss, M., and Waller, M.P. "Planning chemical syntheses with deep neural networks and symbolic AI." Nature, 555, 604–610 (2018).DOI: 10.1038/nature25978

21.  Jumper, J. et al. "Highly accurate protein structure prediction with AlphaFold." Nature, 596, 583–589 (2021).DOI: 10.1038/s41586-021-03819-2

22.  Coley, C.W. et al. "Machine learning in computer-aided synthesis planning." Accounts of Chemical Research, 51(5), 1281–1289 (2018). DOI: 10.1021/acs.accounts.8b00075

23.  Pushpakom, S., Iorio, F., Eyers, P.A., Escott, K.J., Hopper, S., Wells, A., Doig, A., Guilliams, T., Latimer, J., McNamee, C., et al. "Drug repurposing: progress, challenges and recommendations." Nature Reviews Drug Discovery, 18(1), 41–58 (2019). DOI: 10.1038/nrd.2018.168

24.  Smith, J., & Lee, A. (2022). The role of artificial intelligence in post-market drug safety monitoring. Journal of Pharmacovigilance, 15(3), 145-160.

25.  Nagar, A , Gobbiru, J., & Chakravarty, A.(2025) Artificial Intelligence in Pharmacovigilance: advancing drug safety monitoring & regulatory integration.

26.  Wang , L., Huang , Y. Chen, J., & Zhang, W.(2024) AI & big data for Pharmacovigilance and Patient safety, Journal of Medicine , Surgery and Public health. https://appinventiv.com/blog/ai-in-drug-discovery /

27.  Algarvio , R. C., Almeida, A I., Gomes , J. J., et al (2025). AI in Pharmacovigilance : a narrative review and practical experience with an expert defined Bayesian network  tool . International journal of Clinical Pharmacy .

28.  Yepeng Huang, Xiaorui Su, Varun Ullanat, Intae Moon, Ivy Liang, Lindsay Clegg, Damilola Olabode, Ruthie Johnson, Nicholas Ho, Megan Gibbs, Alexander Gusev, Bino John & Marinka Zitnik. Multimodal AI predicts clinical outcomes of drug combinations from preclinical data

29.  Atz, K., Cotos, L., Isert, C., Håkansson, M., Focht, D., Hilleke, M., Nippa, D. F., Iff, M., Ledergerber, J., Schiebroek, C. C. G., Romeo, V., Hiss, J. A., Merk, D., Schneider, P., Kuhn, B., Grether, U., & Schneider, G. (2024). Prospective de novo drug design with deep interactome learning.

30.  “AI integration with multiomics: Transformative leap in healthcare, says GlobalData.” GlobalData, Disruptor Intelligence Center, “AI integration with multiomics: Transformative leap in healthcare, says GlobalData”, 24 Jan 2024.

31.  Abdallah, M., Nakken, S., Bierkens, M., Galvis, J., Groppi, A., Karkar, S., et al. (2025). TrialMatchAI: An End-to-End AI-powered Clinical Trial Recommendation System to Streamline Patient-to-Trial Matching

32.  Zhou, X., Yang, C., Liu, Z., Li, S., Chen, C., & Yu, H. (2024). LLM-Match: An Open-Sourced Patient Matching Model Based on Large Language Models and Retrieval-Augmented Generation.

33.  Patel, Y. R., Li, R. C., Ngo, J., et al. (2023). TrialGPT: Matching patients to clinical trials with large language models. NPJ Digital Medicine, 6, Article 98. https://doi.org/10.1038/s41746-023-00880-2

34.  Tran, T. T. V., Wibowo, A. S., Tayara, H., & Chong, K. T. (2023).

Artificial Intelligence in Drug Toxicity Prediction: Recent Advances, Challenges, and Future Perspectives. Journal of Chemical Information and Modeling, 63(9), 2628‑2643.

35.  The Role of AI in Drug Discovery — Abbas, 2024, ChemBioChem

36.  Open‑Source Browser‑Based Tools for Structure‑Based Computer‑Aided Drug Discovery — Wang & Durrant, 2022, Molecules

37.  Beam, A. L., & Kohane, I. S. (2018). Big Data and Machine Learning in Health Care. JAMA, 319(13), 1317–1318. DOI: 10.1001/jama.2017.18391

38.  Wiens, J., Saria, S., Sendak, M., et al. (2019). Do no harm: a roadmap for responsible machine learning for health care. Nature Medicine, 25, 1337–1340. DOI: 10.1038/s41591-019-0548-6

39.  U.S. Food and Drug Administration (FDA). (2021). Artificial Intelligence and Machine Learning in Software as a Medical Device.

Related Images:



Recent Images



Optimizing Patient Outcomes Through Evolving Roles in Pharmacy Practice: A Review of Current Trends and Future Directions
Design and Evaluation of Mucoadhesive Buccal Tablets of Loratadine Using Manila Tamarind Seed Powder
A  Herbal Soap Incorporating Orange Peel Powder: Formulation and Therapeutic Evaluation
Enhanced Topical Therapeutics: A Review on Development and Evaluation of Innovative Emulgel Formulations
AI and The Future of Drug Discovery: From Innovation to Implementation
Evidence-Based Management of Urinary Tract Infections: Balancing Efficacy, Safety, and Antimicrobial Stewardship
Medication Used in Pregnancy
Antipsychotic Medications and Patient Safety: A Systematic Analysis of Adverse Drug Reactions Across Drug Classes
Hysterectomy and Cardiometabolic Risk: A Comprehensive Review
Design and Implementation of a Digital Pharmacovigilance Support Platform: Interaction Detection, ADR Monitoring, and Reporting

Tags


Recomonded Articles:

Author(s): Magendran Rajendiran1*, Muruganand R2, Abhisek Kumar Sinha2, Mohamed Raashith M S2, Jasitha Begam M2, Usharani G2, Dhivyari D2, Deepika T2

DOI: https://doi.org/10.71431/IJRPAS.2025.4413         Access: Open Access Read More

Author(s): Hasanen Pinjari; Rehan Deshmukh; Khan Faizan; Dr. Gulam Javed.

DOI:         Access: Open Access Read More

Author(s): Kazi Kaif Aarefoddin; Mohommad Altamash*; Abdullah Danish

DOI: https://doi.org/10.71431/IJRPAS.2025.4313         Access: Open Access Read More

Author(s): Patil Aachal*; Nusrat Khan

DOI:         Access: Open Access Read More

Author(s): S. Sathya, Karthiga. D, Lokesh. S, Sabari Manikandan, V. R. Rajeswari

DOI: https://doi.org/10.71431/IJRPAS.2025.4105         Access: Open Access Read More

Author(s): Mr. Shrinivas Kapale; Mr. Gopal Lohiya; Dr.Kranti Satpute

DOI:         Access: Open Access Read More

Author(s): Girisha Chaudhari;Sofiya Morris; Dr. Ashish Jain

DOI:         Access: Open Access Read More

Author(s): Mugdivari Sangeetha*; Balemla Sada; Kunal Bohara; Syed Yaseen Pasha; Yerram Shravya; Tadikonda Rama Rao

DOI: https://doi.org/10.71431/IJRPAS.2025.4605         Access: Open Access Read More

Author(s): Harshal G. Patil*, Vinit S. Khairnar

DOI: https://doi.org/10.71431/IJRPAS.2025.4503         Access: Open Access Read More

Author(s): Shaikh Aminoddin Raisoddin; Shifa Maniya; Sayeeda Begum; Naziya Shaikh.

DOI:         Access: Open Access Read More

Author(s): Mohammad Zaid*; Prof. Imran Kalam; Dr. Quazi Majaz

DOI:         Access: Open Access Read More

Author(s): Devadatta Pandurang Hatim; Sachinkumar V. Patil; Sachin Mali

DOI:         Access: Open Access Read More

Author(s): Ankitha .V1;Narendra Reddy. A1; Yalmaji .21Madhu Harika. B1*

DOI: https://doi.org/10.71431/IJRPAS.2025.4206         Access: Open Access Read More

Author(s): Shaikh Aklakh Gafar1*; Dr. M.H.G Dehghan1;Khan Juber Kadir2

DOI:         Access: Open Access Read More

Author(s): Momin Zain; Shaikh Arbaz; Shaikh Adnan; Rehan Deshmukh

DOI:         Access: Open Access Read More

Author(s): Baburao Mohite; Manisha Mane; Sarika Suryavanshi; Shrirang Kharmate; Pranali Patil; Anand Gadad.

DOI:         Access: Open Access Read More

Author(s): Quazi Kamil Hafiz Anees Ahemad; Dr. Majaz Quazi; Quazi Wasil; Dr. G. J. Khan

DOI:         Access: Open Access Read More

Author(s): Museb shaikh Mukhtar; Khalifa Mahmadasif Y; Pathan Ayyaj Magbul; Shaikh Faisal; Shaikh Aman; MD Moiz, Shaikh Arbaj.

DOI:         Access: Open Access Read More

Author(s): Nilesh R. Suryawanshi; Karan. A. Patil; Nikhil. J. Rajput; H. P. Suryawanshi; R. A. Ahirrao; J. I. Pinjari

DOI:         Access: Open Access Read More