1.
Russell S, Norvig P. Artificial Intelligence: A
Modern Approach. 4th ed. Pearson Education; 2021.
2.
Kaplan A, Haenlein M. Siri, Siri, in my hand: Who’s
the fairest in the land? On the interpretations, illustrations, and
implications of artificial intelligence. Business Horizons. 2019; 62(1):15–25.
Doi:10.1016/j.bushor.2018.08.00
3.
Mak KK, Pichika MR. Artificial intelligence in drug
development: Present status and future prospects. Drug Discovery Today. 2019;
24(3):773–780. doi:10.1016/j.drudis.2018.11.014
4.
Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC,
Munos BH, Lindborg SR, Schacht AL. How to improve R&D productivity: The
pharmaceutical industry's grand challenge. Nat Rev Drug Discovery. 2010;
9(3):203–214. doi:10.1038/nrd3078
5.
Schneider G, Clark DE. Automated de novo drug design:
Are we nearly there yet?
Angew Chem Int Ed Engl. 2019; 58(32):10792–10803.
doi:10.1002/anie.201814843
6.
Jumper J, Evans R, Pritzel A, Green T, Figurnov M,
Ronneberger O, et al. Highly accurate protein structure prediction with
alphaFold. Nature. 2021; 596(7873):583–589. doi:10.1038/s41586-021-03819-2
7.
Vamathevan, J., Clark, D., Czodrowski, P. et al.
(2019). Applications of machine learning in drug discovery and development.
Nature Reviews Drug Discovery, 18(6), 463–477.
https://doi.org/10.1038/s41573-019-0024-5
8.
McNair D, Young M, Annetta M. Artificial
intelligence and machine learning for lead-to-candidate decision-making and
beyond. Annu Rev Pharmacol Toxicol. 2022;62:xxx–xxx. Doi:10.1146/annurev-pharmtox-051921-023255.
9.
Subramanian, A., Narayan, R., Corsello, S. M.,
Peck, D. D., Natoli, T. E., Lu, X., ... & Golub, T. R. (2017). A next
generation connectivity map: L1000 platform and the first 1,000,000 profiles.
Cell, 171(6), 1437–1452.e17. https://doi.org/10.1016/j.cell.2017.10.049
10. Freshour,
S. L., Kiwala, S., Cotto, K. C., Coffman, A. C., McMichael, J. F., Song, J. J.,
... & Griffith, M. (2021). Integration of the Drug–Gene Interaction
Database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Research,
49(D1), D1144–D1151. https://doi.org/10.1093/nar/gkaa1084
11. Priyakumar
UD, Deshpande S, Joshi R, Sonavane U, Dandekar P. Applications of machine
learning in computer-aided drug discovery. WIREs Comput Mol Sci.
2022;12(6):e1581. doi:10.1002/wcms.1581
12. Ramsundar
B, Liu B, Wu Z, Verras A, Tudor M, Feinberg EN, et al. Deep Learning for the
Life Sciences: Applying Deep Learning to Genomics, Microscopy, Drug Discovery,
and More. 1st ed. Sebastopol (CA): O’Reilly Media; 2019.
13. Pillai,
N., Abos, A., Teutonico, D., & Mavroudis, P. D. M. (2024). Machine learning
framework to predict pharmacokinetic profile of small molecule drugs based on
chemical structure. Clinical and Translational Science
14. Brown,
N., Fiscato, M., Segler, M. H. S., & Vaucher, A. C. (2019).
15. GuacaMol:
Benchmarking Models for de Novo Molecular Design.
16. Journal
of Chemical Information and Modeling, 59(3), 1096–1108.
17. Xia, Y.,
Wang, Y., & Zhang, W. (2024). A comprehensive review of molecular optimization
in artificial intelligence based drug discovery. Quantitative Biology, 12(1),
15-42.https://doi.org/10.1002/qub2.30
18. Ekins, S.
et al. "Machine learning models and pathway prediction for ADMET."
Nature Reviews Drug Discovery, 18(11), 696–714 (2019).
19. DOI:
10.1038/s41573-019-0024-5
20. Segler,
M.H.S., Preuss, M., and Waller, M.P. "Planning chemical syntheses with
deep neural networks and symbolic AI." Nature, 555, 604–610
(2018).DOI: 10.1038/nature25978
21. Jumper,
J. et al. "Highly accurate protein structure prediction with
AlphaFold." Nature, 596, 583–589 (2021).DOI:
10.1038/s41586-021-03819-2
22. Coley,
C.W. et al. "Machine learning in computer-aided synthesis planning." Accounts
of Chemical Research, 51(5), 1281–1289 (2018). DOI:
10.1021/acs.accounts.8b00075
23. Pushpakom,
S., Iorio, F., Eyers, P.A., Escott, K.J., Hopper, S., Wells, A., Doig, A.,
Guilliams, T., Latimer, J., McNamee, C., et al. "Drug repurposing:
progress, challenges and recommendations." Nature Reviews Drug
Discovery, 18(1), 41–58 (2019). DOI: 10.1038/nrd.2018.168
24. Smith,
J., & Lee, A. (2022). The role of artificial intelligence in
post-market drug safety monitoring. Journal of Pharmacovigilance, 15(3),
145-160.
25. Nagar, A
, Gobbiru, J., & Chakravarty, A.(2025) Artificial Intelligence in
Pharmacovigilance: advancing drug safety monitoring & regulatory
integration.
26. Wang ,
L., Huang , Y. Chen, J., & Zhang, W.(2024) AI & big data for
Pharmacovigilance and Patient safety, Journal of Medicine , Surgery and Public
health. https://appinventiv.com/blog/ai-in-drug-discovery
/
27. Algarvio
, R. C., Almeida, A I., Gomes , J. J., et al (2025). AI in Pharmacovigilance :
a narrative review and practical experience with an expert defined Bayesian network tool . International journal of Clinical
Pharmacy .
28. Yepeng
Huang, Xiaorui Su, Varun Ullanat, Intae Moon, Ivy Liang, Lindsay Clegg,
Damilola Olabode, Ruthie Johnson, Nicholas Ho, Megan Gibbs, Alexander Gusev,
Bino John & Marinka Zitnik. Multimodal AI predicts clinical outcomes of
drug combinations from preclinical data
29. Atz,
K., Cotos, L., Isert, C., Håkansson, M., Focht, D., Hilleke, M., Nippa, D. F.,
Iff, M., Ledergerber, J., Schiebroek, C. C. G., Romeo, V., Hiss, J. A., Merk,
D., Schneider, P., Kuhn, B., Grether, U., & Schneider, G. (2024). Prospective
de novo drug design with deep interactome learning.
30. “AI integration with multiomics:
Transformative leap in healthcare, says GlobalData.”
GlobalData, Disruptor Intelligence Center, “AI integration with
multiomics: Transformative leap in healthcare, says GlobalData”, 24
Jan 2024.
31. Abdallah,
M., Nakken, S., Bierkens, M., Galvis, J., Groppi, A., Karkar, S., et al.
(2025). TrialMatchAI: An End-to-End AI-powered Clinical Trial Recommendation
System to Streamline Patient-to-Trial Matching
32. Zhou, X., Yang, C., Liu, Z., Li, S.,
Chen, C., & Yu, H. (2024). LLM-Match: An
Open-Sourced Patient Matching Model Based on Large Language Models and
Retrieval-Augmented Generation.
33. Patel, Y. R., Li, R. C., Ngo, J., et
al. (2023). TrialGPT: Matching patients to clinical
trials with large language models. NPJ Digital Medicine, 6,
Article 98. https://doi.org/10.1038/s41746-023-00880-2
34. Tran, T. T. V., Wibowo, A. S.,
Tayara, H., & Chong, K. T. (2023).
Artificial Intelligence in Drug Toxicity Prediction: Recent Advances,
Challenges, and Future Perspectives. Journal of Chemical
Information and Modeling, 63(9), 2628‑2643.
35. The Role of AI in Drug Discovery
— Abbas, 2024, ChemBioChem
36. Open‑Source Browser‑Based Tools for
Structure‑Based Computer‑Aided Drug Discovery
— Wang & Durrant, 2022, Molecules
37. Beam,
A. L., & Kohane, I. S. (2018). Big Data and Machine Learning in Health
Care. JAMA, 319(13), 1317–1318. DOI: 10.1001/jama.2017.18391
38. Wiens,
J., Saria, S., Sendak, M., et al. (2019). Do no harm: a roadmap for
responsible machine learning for health care. Nature Medicine, 25,
1337–1340. DOI: 10.1038/s41591-019-0548-6
39. U.S.
Food and Drug Administration (FDA). (2021). Artificial Intelligence and
Machine Learning in Software as a Medical Device.