1. En Li Cho E, Ang CZ, Quek J, et al.: Global prevalence of non-alcoholic fatty liver disease in type 2 diabetes mellitus: an updated systematic review and meta-analysis. Gut. 2023, 72:2138-2148. 10.1136/gutjnl-2023 330110
2. Younossi ZM, Golabi P, de Avila L, et al.: The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J Hepatol. 2019, 71:793-801. 10.1016/j.jhep.2019.06.021.
3. Gyldenkerne C, Kahlert J, Thrane PG, et al.: 2-fold more cardiovascular disease events decades before type 2 diabetes diagnosis: a nationwide registry study. J Am Coll Cardiol. 2024, 84:2251-2259. 10.1016/j.jacc.2024.06.050
4. Kaze AD, Santhanam P, Musani SK, Ahima R, Echouffo-Tcheugui JB: Metabolic Dyslipidemia and Cardiovascular Outcomes in Type 2 Diabetes Mellitus: Findings From the Look AHEAD Study. J Am Heart Assoc. 2021, 10:7. 10.1161/JAHA.120.016947
5. Elisa Dal Canto, Antonio Ceriello, Lars Rydén, et al.: Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. Eur J Prev Cardiol. 2019, 26(Suppl 2):25-32. 10.1177/2047487319878371.
6. Warraich HJ, Rana JS: Dyslipidemia in diabetes mellitus and cardiovascular disease . Cardiovasc Endocrinol. 2017, 15:27-32. 10.1097/XCE.0000000000000120.
7. Brie AD, Christodorescu RM, Popescu R, Adam O, Tîrziu A, Brie DM: Atherosclerosis and Insulin Resistance: Is There a Link Between Them?. Biomedicines. 2025, 23:13. 10.3390/biomedicines13061291.
8. Siddiqui MS, Parmar D, Sheikh F, et al.: Saroglitazar, a Dual PPAR α/γ Agonist, Improves Atherogenic Dyslipidemia in Patients With Non-Cirrhotic Nonalcoholic Fatty Liver Disease: A Pooled Analysis. Clin Gastroenterol Hepatol. 2023, 21:2597-2605. 10.1016/j.cgh.2023.01.018.
9. Bage, I. J, Kamalanathan, et al.: Effect of saroglitazar in South Indian patients with diabetic dyslipidemia uncontrolled on a moderate-intensity statin and the association of PPAR α and γ gene polymorphisms with its response. Int J Basic Clin Pharmacol. . 2023, 12:414-421. 10.18203/2319-2003.ijbcp20231121.
10. Moon JS, Park IR, Kim SS, et al.: The Efficacy and Safety of Moderate-Intensity Rosuvastatin with Ezetimibe versus High-Intensity Rosuvastatin in High Atherosclerotic Cardiovascular Disease Risk Patients with Type 2 Diabetes Mellitus: A Randomized, Multicenter, Open, Parallel, Phase 4 Study. Diabetes Metab J. 2023, 47:818-825. 10.4093/dmj.2023.0171.
11. Noorani S, Ankam M, Ganesh CHSV, et al.: Saroglitazar - A novel treatment for non-alcoholic steatohepatitis. AIP Conf Proc. 2024, 3209:060019. 10.1063/5.0228900
12. Bandyopadhyay S, Samajdar SS, Das S: Effects of saroglitazar in the treatment of non-alcoholic fatty liver disease or non-alcoholic steatohepatitis: A systematic review and meta-analysis. Clin Res Hepatol Gastroenterol. 2023, 47:102174-10. 10.1016/j.clinre.2023.102174.
13. Gawrieh S, Noureddin M, Loo N, et al.: Saroglitazar, a PPAR-α/γ Agonist, for Treatment of NAFLD: A Randomized Controlled Double-Blind Phase 2 Trial. Hepatology. 2021, 74:1809-1824. 10.1002/hep.31843.
14. Agrawal R: The first approved agent in the Glitazar's Class: Saroglitazar. Curr Drug Targets. 2014, 15:151-5. 10.2174/13894501113149990199.
15. Padole P, Giri SR, Trivedi C, et al.: Saroglitazar for nonalcoholic fatty liver disease: A single-center, open label, phase 4 study. J Clin Transl Hepatol. 2021, 9:165-172. 10.14218/JCTH.2020.00062
16. Zydus receives DCGI approval of Saroglitazar for treatment of non-alcoholic fatty liver disease in India [Internet]. [cited 24 August 2025]. . Business Standard, 2020.
17. Jain N, Bhansali S, Kurpad AV, et al.: Effect of a Dual PPAR α/γ agonist on Insulin Sensitivity in Patients of Type 2 Diabetes with Hypertriglyceridemia- Randomized double-blind placebo-controlled trial. Sci Rep. 2019, 1038:41598-019. 10.1038/s41598-019-55466-3.
18. Rasheed RH, Aziz TA: Cardioprotective Effects of SAR Through Attenuating Cardiac-Specific Markers, Inflammatory Markers, Oxidative Stress, and Anxiety in Rats Challenged with 5-Fluorouracil. J Xenobiot. 2025, 15:130. 10.3390/jox15040130
19. Rodriguez-Gutierrez R, González JG, Parmar D, et al.: Saroglitazar is noninferior to fenofibrate in reducing triglyceride levels in hypertriglyceridemic patients in a randomized clinical trial. J Lipid Res. 2022, 63:100233. 10.1016/j.jlr.2022.100233.
20. Krishnappa M, Patil K, Parmar K, et al.: Effect of saroglitazar 2 mg and 4 mg on glycemic control, lipid profile and cardiovascular disease risk in patients with type 2 diabetes mellitus: a 56-week, randomized, double blind, phase 3 study (PRESS XII study). Cardiovasc Diabetol. 2020, 19:93. 10.1186/s12933-020-01073 w.
21. Sosale A, Saboo B, Sosale B: Saroglitazar for the treatment of hypertrig-lyceridemia in patients with type 2 diabetes: current evidence. Diabetes Metab Syndr Obes. 2015, 15:189-96. 10.2147/DMSO.S49592.
22. Goyal, O, Nohria, et al.: Saroglitazar in patients with non-alcoholic fatty liver disease and diabetic dyslipidemia: a prospective, observational, real world study. Sci Rep. 2020, 10:21117. 10.1038/s41598-020 78342-x.
23. Das S, Gupta S, Lathia T, et al.: Evaluation of Effectiveness and Tolerability of Saroglitazar in Metabolic Disease Patients of India: A Retrospective, Observational, Electronic Medical Record-Based Real-World Evidence Study. Cureus. 2025, 30:89028. 10.7759/cureus.89028.
24. Padole P, Arora A, Sharma P, Chand P, Verma N, Kumar A: Saroglitazar for Nonalcoholic Fatty Liver Disease: A Single Centre Experience in 91 Patients. J Clin Exp Hepatol. 2022, 12:435-439. 10.1016/j.jceh.2021.06.015.
25. Pratik, Hasan A: Efficacy and Safety of Saroglitazar in the Management of Fatty Liver, Diabetes and Dyslipidaemia. Int J Clin Pharmacol Res. 2025, 17 :244-251.
26. Siddiqui MS, Idowu MO, Parmar D, et al.: Sanyal AJ. A Phase 2 Double Blinded, Randomized Controlled Trial of Saroglitazar in Patients With Nonalcoholic Steatohepatitis. Clin Gastroenterol Hepatol. 2021, 19:2670 2672. 10.1016/j.cgh.2020.10.051.
27. Armstrong MJ, Gaunt P, Aithal GP, et al.: Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet. 2016, 13:679-690. 10.1016/S0140-6736(15)00803-X.
28. Harrison SA, Thang C, Bolze S, et al.: Evaluation of PXL065 - deuterium-stabilized (R)-pioglitazone in patients with NASH: a phase II randomized placebo-controlled trial (DESTINY-1). J Hepatol. 2023, 78:914 25. 10.1016/j.jhep.2022.12.027.spe
29. Younossi ZM, Ratziu V, Loomba R, et al.: Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet. 2019, 394:2184-96. 10.1016/S0140-6736(19)33041-7
30. European Medicines Agency. EU/ 3/21/2460: Orphan designation for saroglitazar magnesium for the treatment of primary biliary cholangitis. EMA/COMP/311285/2021. 2021, 3:21-2460.
31. Orphan Drug Designation (January 26, 2021): U.S: Food and Drug Administration. Orphan Drug Designations and Approvals: Saroglitazar magnesium for Primary Biliary Cholangitis. 2021, 26-686819.
32. ClinicalTrials.gov. A randomized, double-blind, placebo-controlled, multicenter phase 2b/3 study to evaluate the efficacy and safety of saroglitazar magnesium for the treatment of primary biliary cholangitis (EPICS-III). Identifier: NCT05133336. . (2025). Accessed: 2025 Aug 24: https://clinicaltrials.gov/study/NCT05133336
33. ClinicalTrials.gov. An open-label extension study to assess the long-term safety and efficacy of saroglitazar magnesium in participants with primary biliary cholangitis. Identifier: NCT06427395. Updated. 2024, 6427395:2025-24.
34. Ganda OP: Impact of Lipid and ASCVD-Modulating Agents on Glycemia and New-Onset Diabetes or Prediabetes. JACC Adv. 2025, 4:101700-10. 10.1016/j.jacadv.2025.101700
35. Ferri, N.; Ruscica, M.; Fazio, S.; Corsini, A: Low-Density Lipoprotein Cholesterol-Lowering Drugs: A Narrative Review.. J. Clin. Med. 2024, 13:943. 10.3390/jcm13040943
36. Laakso M, Fernandes Silva L: Statins and risk of type 2 diabetes: mechanism and clinical implications . Front Endocrinol (Lausanne. 2023, 19:1239335. 10.3389/fendo.2023.1239335.
37. Sining Xie, Federica Galimberti, Elena Olmastroni, et al.: META-LIPID Group , Effect of lipid-lowering therapies on C-reactive protein levels: a comprehensive meta-analysis of randomized controlled trials. Cardiovasc Res. 2024, 120 (4):333-344. 10.1093/cvr/cvae034
38. Oesterle A, Laufs U, Liao JK: Pleiotropic Effects of Statins on the Cardiovascular System . Circ Res. 2017, 6:229-243. 10.1161/RES.0000000000000228.
39. Ridker PM, Danielson E, Fonseca FA, et al.: JUPITER Study Group. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008, 20:2195-207. 10.1056/NEJMoa0807646.
40. Cannon CP, Blazing MA, Giugliano RP, et al.: Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N Engl J Med. 2015, 18:2387-97. 10.1056/NEJMoa1410489.
41. Sabatine MS, Giugliano RP, Keech AC, et al.: Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N Engl J Med. 2017, 4:1713-1722. 10.1056/NEJMoa1615664.
42. Cai T, Abel L, Langford O, et al.: Associations between statins and adverse events in primary prevention of cardiovascular disease: systematic review with pairwise, network, and dose-response meta-analyses. BMJ. 2021, 374:1537. 10.1136/bmj.n1537
43. Preiss D, Logue J, Sammons E, et al.: Effect of Fenofibrate on Progression of Diabetic Retinopathy . NEJM Evid. 2024, 3:2400179. 10.1056/EVIDoa2400179.
44. Bijland S, Pieterman EJ, Maas AC, et al.: Fenofibrate increases very low density lipoprotein triglyceride production despite reducing plasma triglyceride levels in APOE3‐Leiden.CETP mice.. J Biol Chem.. 2010, 285(33):25168-25175. 10.1074/jbc.M110.123992
45. Tsunoda F, Asztalos IB, Horvath KV, Steiner G, Schaefer EJ, Asztalos BF. : Fenofibrate, HDL, and cardiovascular disease in Type-2 diabetes: The DAIS trial. Atherosclerosis. 2016, 247:35-39. 10.1016/j.atherosclerosis.2016.01.028.
46. Yamashita S, Rizzo M, Su TC, Masuda D: Novel Selective PPARα Modulator Pemafibrate for Dyslipidemia, Nonalcoholic Fatty Liver Disease (NAFLD), and Atherosclerosis. Metabolites. 2023, 2:626. 10.3390/metabo13050626.
47. Kitamura, S, Murao, et al.: Effect of fenofibrate and selective PPARα modulator (SPPARMα), pemafibrate on KATP channel activity and insulin secretion. BMC. 2023, 16(1):202. 10.1186/s13104-023-06489-7
48. Farooq B, Cheema RR, Qureshi ZH, Yasmeen N, Sahu EH: The Effectiveness and Safety of Fenofibrate and Saroglitazar in The Treatment of Diabetic Dyslipidemia. Life Sci. 2024, 5:266-272. 10.37185/LnS.1.1.632
49. Pieralisi AV, Cevey ÁC, Penas FN, et al.: Fenofibrate Increases the Population of Non-Classical Monocytes in Asymptomatic Chagas Disease Patients and Modulates Inflammatory Cytokines in PBMC. Front Cell Infect Microbiol. 2022, 11:785166. 10.3389/fcimb.2021.785166.
50. Parra-Pineda, A, Lizarazo-Bocanegra, et al.: Fenofibrate and Diabetic Retinopathy. Diabetes Ther . 2025, 16:1763-1777. 10.1007/s13300-025-01774-z
51. Liu M, Lim ST, Song W, Coffman TM, Wang X: Beyond lipids: fenofibrate in diabetic retinopathy and nephropathy. Trends Pharmacol Sci. 2025, 19:0165-6147. 10.1016/j.tips.2025.07.014.
52. Bhatt DL, Kato ET, Filippatos G, et al.: Pemafibrate to Reduce Cardiovascular Outcomes in Patients With Diabetes and Hypertriglyceridemia (PROMINENT). N Engl J Med. 2022, 387:1923-34. 10.1056/NEJMoa2210645
53. Hong, S, Kim, et al.: Fenofibrate’s impact on cardiovascular risk in patients with diabetes: a nationwide propensity-score matched cohort study. Cardiovasc Diabetol . 2024, 23:263. 10.1186/s12933-024-02353-5
54. Sobukawa, Y, Hatta, et al.: Safety of Combined Statin and Fibrate Therapy: Risks of Liver Injury and Acute Kidney Injury in a Cohort Study from the Shizuoka Kokuho Database. Drugs Real World Outcomes . 2024, 11:317-330. 10.1007/s40801-024-00426-1
55. Shima H, Tashiro M, Inoue T, et al.: Clinical efficacy and safety of low-dose pemafibrate in patients with severe renal impairment: A retrospective study. Cureus. 2024, 7:57777. 10.7759/cureus.57777
56. Eggleton JS, Jialal I: Thiazolidinediones. [Updated 2023 Feb 20]. StatPearls , Treasure Island (FL); 2025.
57. Heo JH, Kim SH, Lee YJ, et al.: Pioglitazone as add-on therapy in patients with type 2 diabetes . Diabetes Metab J. 2024, 48(1):45-53. 10.4093/dmj.2023.0314
58. Sabbagh M, Cho YK, Lim S, et al.: Pioglitazone as add-on to metformin and dapagliflozin yields significant enhancements in glycemic control in poorly controlled type 2 diabetes: a meta-analysis of randomized controlled trials. Cureus. 2025, 17:92794. 10.7759/cureus.92794
59. Alam, F, Islam, et al.: Efficacy and Safety of Pioglitazone Monotherapy in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Sci Rep. 2019, 9:5389. 10.1038/s41598-019-41854-2
60. Baagar K, Alessa T, Abu-Farha M, et al.: Effect of pioglitazone on inflammatory response and clinical outcome in T2DM patients with COVID- 19: a randomized multicenter double-blind clinical trial. Front Immunol. 2024, 6:1369918. 10.3389/fimmu.2024.1369918
61. Radenković M: Pioglitazone and Endothelial Dysfunction: Pleiotropic Effects and Possible Therapeutic Implications. Sci Pharm. 2014, 18:709-21. 10.3797/scipharm.1407-16.
62. Sheikh RA, Khan MS, Siddiqui F, et al.: Association of pioglitazone with major adverse cardiovascular events, all-cause mortality, and heart failure hospitalizations: a systematic review. Cureus. 2023, 15(4):48910.
63. Padda IS, Mahtani AU, Parmar M: Sodium-Glucose Transport 2 (SGLT2) Inhibitors. [Updated 2025 Sep 15]. In: StatPearls . Treasure Island (FL): StatPearls Publishing; 2025 Jan-. StatPearls , Treasure Island (FL); 2025.
64. Latva-Rasku A, Rebelos E, Tuisku J, et al.: Isackson H, Kirjavainen AK, Koffert J, Heurling K, Nummenmaa L, Ferrannini E, Oldgren J, Oscarsson J, Nuutila P. SGLT2 Inhibitor Dapagliflozin Increases Skeletal Muscle and Brain Fatty Acid Uptake in Individuals With Type 2 Diabetes: A Randomized Double-Blind Placebo Controlled Positron Emission Tomography Study. Diabetes Care. 2024, 1:1630-1637. 10.2337/dc24-0470
65. Basu D, Huggins LA, Scerbo D, et al.: Mechanism of Increased LDL (Low-Density Lipoprotein) and Decreased Triglycerides With SGLT2 (Sodium-Glucose Cotransporter 2) Inhibition. Arterioscler Thromb Vasc Biol. 2018, 38:2207-2216. 10.1161/ATVBAHA.118.311339.
66. Nagao, M, Sasaki, et al.: Ipragliflozin and sitagliptin differentially affect lipid and apolipoprotein profiles in type 2 diabetes: the SUCRE study. Cardiovasc Diabetol 23. 56:
67. Sato, H, Ishikawa, et al.: Model-based meta-analysis of HbA1c reduction across SGLT2 inhibitors using dose adjusted by urinary glucose excretion. Sci Rep. 14:24695.
68. Mone P, Varzideh F, Jankauskas SS, Pansini A, Lombardi A, Frullone S, Santulli G: SGLT2 inhibition via empagliflozin improves endothelial function and reduces mitochondrial oxidative stress: insights from frail hypertensive and diabetic patients. Hypertension. 2022, 79:1633-1643. 10.1161/HYPERTENSIONAHA.122.19586
69. Sukhanov S, Higashi Y, Yoshida T, et al.: The SGLT2 inhibitor Empagliflozin attenuates interleukin-17A induced human aortic smooth muscle cell proliferation and migration by targeting TRAF3IP2/ROS/NLRP3/Caspase-1-dependent IL-1β and IL-18 secretion. Cell Signal. 2021, 77:109825. 10.1016/j.cellsig.2020.109825.
70. McMurray JJV, Solomon SD, Inzucchi SE, et al.: Efficacy and safety of dapagliflozin in heart failure with mildly reduced or preserved ejection fraction according to age: the DELIVER trial. N Engl J Med. 2022, 387:1089-1098. 10.1056/NEJMoa2206286
71. Ghadeer K. Dawwas, James H. Flory, Sean Hennessy, Charles E. Leonard, James D: Lewis; Comparative Safety of Sodium-Glucose Cotransporter 2 Inhibitors Versus Dipeptidyl Peptidase 4 Inhibitors and Sulfonylureas on the Risk of Diabetic Ketoacidosis. Diabetes Care 1 April. 2022, 45:919-927. 10.2337/dc21 2177
72. Luo B, Sun Z and Luo H : Efficacy and safety of different proprotein convertase subtilisin/kexin type 9 inhibitors in the general population and solid organ transplant recipients: a network meta-analysis. Front Pharmacol. 2025, 9:1584612. 10.3389/fphar.2025.1584612
73. Geng S, Mei F, Li J, Liu Y: Efficacy and safety of PCSK9 inhibition in cardiovascular disease: a meta-analysis of 45 randomized controlled trials. Cardiol J. 2021, 28:827-837. 10.5603/CJ.a2021.0110
74. Ghaempour G, Zamani-Garmsiri F, Shaikhnia F, et al.: Efficacy and Safety of Alirocumab and Evolocumab as Proprotein Convertase Subtilisin/Kexin Type. 9:223-241. 10.2174/0929867330666230228120601
75. Schwartz GG, Szarek M, Bhatt DL, et al.: Transiently achieved very low LDL-cholesterol levels by statin and alirocumab after acute coronary syndrome are associated with cardiovascular risk reduction: the ODYSSEY OUTCOMES trial. Eur Heart J. 2023, 5:1408-17. 10.1093/eurheartj/ehad144.
76. Marfella R, Prattichizzo F, Sardu C, et al.: Evidence of an anti-inflammatory effect of PCSK9 inhibitors within the human atherosclerotic plaque. Atherosclerosis. 2023, 370:1-8. 10.1016/j.atherosclerosis.2023.05.074
77. Goodman SG, Steg PG, Poulouin Y, et al.: Safety, and Tolerability of Alirocumab in 8242 Patients Eligible for 3 to 5 Years of Placebo-Controlled Observation in the ODYSSEY OUTCOMES Trial. J Am Heart Assoc. 2023, 19:e029216. 10.1161/JAHA.122.029216. Epub 2023 Sep 13. Erratum in:. 10.1161/JAHA.122.027745.
78. McClintick DJ, O'Donoghue ML, De Ferrari GM, et al.: Long-Term Efficacy of Evolocumab in Patients With or Without Multivessel Coronary Disease. J Am Coll Cardiol. 2024, 13:652-664. 10.1016/j.jacc.2023.11.029.
79. ClinicalTrials.gov. A randomized, double-blind, placebo-controlled, multicenter phase IIb study to evaluate the efficacy and safety of saroglitazar magnesium for the treatment of nonalcoholic steatohepatitis with fibrosis. (2025). Accessed: 2025 Aug 24: https://clinicaltrials.gov/study/NCT05011305.
80. ClinicalTrials.gov. A study to evaluate the safety and effectiveness of saroglitazar 4 mg in patients with NAFLD with comorbidities. (2024). Accessed: 2025 Aug 24: https://clinicaltrials.gov/study/NCT05872269.
81. Cosma-Lăzuran R, Leucuta DC, Popoviciu MS: Systemic Immune-Inflammation Index and Related Hematologic Markers as Prognostic Tools in Type 2 Diabetes. . Medicina (Kaunas). 2025, 61(8):1433. 10.3390/medicina61081433
82. Tushar Menon, Vipan Chahil, Dhruv Patel, et al.: Inflammation and cardiovascular disease - Part I: mechanisms and biomarkers. Global Transl Med. 2025, 4(3): 1-11. 10.36922/GTM025100023
83. Maxim E Annink, Jordan M Kraaijenhof, Cheyenne Y Y Beverloo, et al.: Estimating inflammatory risk in atherosclerotic cardiovascular disease: plaque over plasma?. Eur Heart J Cardiovasc Imaging. 2025, 26(3):444-460. 10.1093/ehjci/jeae314
84. Dr. Praveen Kumar H., Dr. Saqlain N.M., Dr. Gouthami D., & Dr. Gireesh.: Role of inflammatory markers in coronary artery disease. J Popul Ther Clin Pharmacol. 2025, 32:1681-1685.
85. Roy A, Zeller J, Nero TL, Klepetko J, Eisenhardt SU, Parker MW, McFadyen JD and Peter K (2025: C-reactive protein: the nexus between inflammation and protein misfolding diseases. Front. Immunol. 16:1612703. 10.3389/fimmu.2025.1612703
86. Hage FG, Szalai AJ: C-reactive protein gene polymorphisms, C-reactive protein blood levels, and cardiovascular disease risk. J Am Coll Cardiol. 2007, 18:1115-22. 10.1016/j.jacc.2007.06.012
87. Dongway AC, Faggad AS, Zaki HY, Abdalla BE: C-reactive protein is associated with low-density lipoprotein cholesterol and obesity in type 2 diabetic Sudanese. Diabetes Metab Syndr Obes. 2015, 4:427-35. 10.2147/DMSO.S85451.
88. Sharma E, Suffys CR, Ferrazoli R: Elevated IL-6 Levels: A Key Contributor to Insulin Resistance and Glucose Dysregulation in Type 2 Diabetes. Am J BioMed. 2025, 13:19-34. 10.18081/2333-5106/2025.13/19
89. Zhang J, Alcaide P, Liu L, Sun J, He A, Luscinskas FW, Shi GP: Regulation of endothelial cell adhesion molecule expression by mast cells, macrophages, and neutrophils. PLoS One. 2011, 14:14525. 10.1371/journal.pone.0014525.
90. Rosenson RS, Stafforini DM: Modulation of oxidative stress, inflammation, and atherosclerosis by lipoprotein-associated phospholipase A2. J Lipid Res. 2012, 53:1767-82. 10.1194/jlr.R024190.
91. Jackisch L, Kumsaiyai W, Moore JD, et al.: Differential expression of Lp-PLA2 in obesity and type 2 diabetes and the influence of lipids. Diabetologia. 2018, 61:1155-1166. 10.1007/s00125-018-4558-6.
92. Garg S, Madhu SV, Suneja S: Lipoprotein associated phospholipase A2 activity & its correlation with oxidized LDL & glycaemic status in early stages of type-2 diabetes mellitus. Indian J Med Res. 2015, 141:107-14. 10.4103/0971-5916.154512.
93. Kheradmand M, Ranjbaran H, Alizadeh-Navaei R, Yakhkeshi R, Moosazadeh M: Association between White Blood Cells Count and Diabetes Mellitus in Tabari Cohort Study: A Case-Control Study. Int J Prev Med. 2021, 29:121-10. 10.4103/ijpvm.IJPVM_336_19
94. Hong X, Zhang X, You L, et al.: Association between adiponectin and newly diagnosed type 2 diabetes in population with the clustering of obesity, dyslipidaemia and hypertension: a cross-sectional study. BMJ Open. 2023, 24:060377. 10.1136/bmjopen-2021-060377.
95. He L, Xuan W, Liu D, Zhong J, Luo H, Cui H, Zhang X and Chen W (2024: The role of adiponectin in the association between abdominal obesity and type 2 diabetes: a mediation analysis among 232,438 Chinese participants. Front. Endocrinol. 15:1327716. 10.3389/fendo.2024.1327716
96. Adams-huet B, Havel P: CRP and Adiponectin and Its Oligomers in the Metabolic Syndrome: Evaluation of New Laboratory-Based Biomarkers. American Journal of Clinical Pathology. 2008, 10.1309/RN84K51B2JJY1Y0B
97. Akbari, R, Behdarvand, et al.: Saroglitazar improved hepatic steatosis and fibrosis by modulating inflammatory cytokines and adiponectin in an animal model of non-alcoholic steatohepatitis. BMC Pharmacol Toxicol 22. 2025, 53:130. 10.1186/s40360-021-00524-8
98. Yang D-R, Wang M-Y, Zhang C-L and Wang Y (2024: Endothelial dysfunction in vascular complications of diabetes: a comprehensive review of mechanisms and implications. Front. Endocrinol. 15:1359255. 10.3389/fendo.2024.1359255
99. Angelo Avogaro, Mattia Albiero, Lisa Menegazzo, et al.: Endothelial Dysfunction in Diabetes: The role of reparatory mechanisms. Diabetes Care 1 May. 2011, 34:285. 10.2337/dc11-s239
100.Chatterjee S, Majumder A, Ray S, et al.: Observational Study of Saroglitazar on Metabolic Parameters in Indian Patients with Diabetic Dyslipidaemia - A Fifty Eight Weeks of Clinical Experience. Diabetes Obes Int J. 2018, 3:000180.
101.Kaul, U, Parmar, et al.: New dual peroxisome proliferator activated receptor agonist—Saroglitazar in diabetic dyslipidemia and non-alcoholic fatty liver disease: integrated analysis of the real world evidence. Cardiovasc Diabetol 18. 80:
102.Nissen SE, Wolski K, Topol EJ: Effect of muraglitazar on death and major adverse cardiovascular events in patients with type 2 diabetes mellitus. JAMA. 2005, 20:2581-6. 10.1001/jama.294.20.joc50147
103.Kendall DM, Rubin CJ, Mohideen P, et al.: Improvement of glycemic control, triglycerides, and HDL cholesterol levels with muraglitazar, a dual (alpha/gamma) peroxisome proliferator-activated receptor activator, in patients with type 2 diabetes inadequately controlled with metformin monotherapy: A double blind, randomized, pioglitazone-comparative study. Diabetes Care. 2006, 29:1016-23. 10.2337/diacare.2951016.
104.Kalliora C, Drosatos K: The Glitazars Paradox: Cardiotoxicity of the Metabolically Beneficial Dual PPARα and PPARγ Activation. J Cardiovasc Pharmacol. 2020, 76:514-526. 10.1097/FJC.0000000000000891.
105.Lincoff AM, Tardif JC, Schwartz GG, et al.: Effect of aleglitazar on cardiovascular outcomes after acute coronary syndrome in patients with type 2 diabetes mellitus: the AleCardio randomized clinical trial. JAMA. 2014, 311:1515-1525. 10.1001/jama.2014.3321
106.Gregor Lorbek, Žiga Urlep & Damjana Rozman : Pharmacogenomic and Personalized Approaches to Tackle Nonalcoholic Fatty Liver Disease. Pharmacogenomics, 17. 2016, 11:1273-1288. 10.2217/pgs-2016-0047
107.Barbara M, Scott A, Alkhouri N: New insights into genetic predisposition and novel therapeutic targets for nonalcoholic fatty liver disease. Hepatobiliary Surg Nutr. 2018, 7:372-381. 10.21037/hbsn.2018.08.05
108.Singal AG, Manjunath H, Yopp AC, et al.: The effect of PNPLA3 on fibrosis progression and development of hepatocellular carcinoma: a meta-analysis. Am J Gastroenterol. 2014, 109:325-34.
109.Pingitore P, Pirazzi C, Mancina RM, et al.: Recombinant PNPLA3 protein shows triglyceride hydrolase activity and its I148M mutation results in loss of function. Biochim Biophys Acta. 2014, 4:574-80. 10.1016/j.bbalip.2013.12.006.
110.Speliotes EK, Yerges-Armstrong LM, Wu J, et al.: Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet. 2011, 7:1001324. 10.1371/journal.pgen.1001324
111.Donnelly KL, Smith CI, Schwarzenberg SJ, et al.: Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005, 115:1343-51. 10.1172/JCI23621
112.Kozlitina J, Smagris E, Stender S, et al.: Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2014, 46:352-6. 10.1038/ng.2901
113.Liu YL, Reeves HL, Burt AD, et al.: TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat Commun. 2014, 5:4309. 10.1038/ncomms5309
114.Teo K, Abeysekera KWM, Adams L, et al.: rs641738C>T near MBOAT7 is associated with liver fat, ALT and fibrosis in NAFLD: A meta-analysis. J Hepatol. 2021, 74(1):20-30. 10.1016/j.jhep.2020.03.041
115.Xu X, Xu H, Liu X, et al.: MBOAT7 rs641738 (C>T) is associated with NAFLD progression in men and decreased ASCVD risk in elder Chinese population. Front. Endocrinol. 14:1199429. 10.3389/fendo.2023.1199429
116.Thangapandi VR, Knittelfelder O, Brosch M, et al.: Loss of hepatic Mboat7 leads to liver fibrosis. Gut. 2021, 70:940-950. 10.1136/gutjnl-2020-320853.
117.Zhang Z, Ji G and Li M (2023: Glucokinase regulatory protein: a balancing act between glucose and lipid metabolism in NAFLD. Front. Endocrinol. 14:1247611. 10.3389/fendo.2023.1247611
118.Nisar Tayyaba, Arshad Kashan, Abbas Zahid, et al.: Prevalence of GCKR rs1260326 Variant in Subjects with Obesity Associated NAFLD and T2DM: A Case-Control Study in South Punjab. Pakistan. J Obes. 2023, 6661858. 10.1155/2023/6661858
119.AlSerri A, Anstee QM, Valenti L, et al.: The SOD2 C47T polymorphism influences NAFLD fibrosis severity: evidence from case-control and intrafamilial allele association studies. J. Hepatol. 56. 10.1016/j.jhep.2011.08.020
120.Mejía-Guzmán JE, Belmont-Hernández RA, Chávez-Tapia NC, Uribe M, Nuño-Lámbarri N: Metabolic Dysfunction-Associated Steatotic Liver Disease: Molecular Mechanisms, Clinical Implications, and Emerging Therapeutic Strategies. Int J Mol Sci. 2025, 25:2959. 10.3390/ijms26072959.
121.Eslam M, Sanyal AJ, George J; International Consensus Panel. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology. 2020, 158:1999-2014. 10.1053/j.gastro.2019.11.312.
122.Morse BL, Kim RB: Is personalized medicine a dream or a reality? . Crit Rev Clin Lab Sci. 2015, 52(1):125 157. 10.3109/10408363.2014.968403
123.Ezhilarasan D: Deciphering the molecular pathways of saroglitazar: A dual PPAR α/γ agonist for managing metabolic NAFLD. Metabolism. 2024, 155:155912. 10.1016/j.metabol.2024.155912.
124.Khan RS, Bril F, Cusi K, Newsome PN: Modulation of Insulin Resistance in Nonalcoholic Fatty Liver Disease . Hepatology. 2019, 70:711-724. 10.1002/hep.30429.
125.Wang Y, Viscarra J, Kim SJ, Sul HS: Transcriptional regulation of hepatic lipogenesis. Nat Rev Mol Cell Biol. 2015, 16:678-689.. 10.1038/nrm4074
126.Wang Y, Nakajima T, Gonzalez FJ, Tanaka N: PPARs as Metabolic Regulators in the Liver: Lessons from Liver-Specific PPAR-Null Mice. Int J Mol Sci. 2020, 17:2061. 10.3390/ijms21062061.
127.Gahlot R, Kumar S, Garg S, et al.: Efficacy and safety of Saroglitazar and Fenofibrate in the treatment of diabetic dyslipidaemia: A pilot study. Indian J Physiol Pharmacol. 2023, 67:15-20.
128.Khan SKS: Comparative Study of Efficacy and Safety of Atorvastatin plus Fenofibrate versus Atorvastatin plus Saroglitazar in Patients of Type 2 Diabetes Mellitus with Dyslipidemia. Journal of Heart Valve Disease. 2024, 29:121-125.
129.Bandyopadhyay S, Samajdar SS, Das S: Effects of saroglitazar in the treatment of non-alcoholic fatty liver disease or non-alcoholic steatohepatitis: A systematic review and meta-analysis. Clin Res Hepatol Gastroenterol. 2023, 47:102174. 10.1016/j.clinre.2023.102174
130. Roy A, Chakraborty S, Jajodia S, et al.: (September 14, 2025) Impact of Saroglitazar on Liver Stiffness Measurements in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) With Compensated Cirrhosis: A Single-Arm Study. Cureus. 17:92313. 10.7759/cureus.92313
131.Shi YW, Fan JG: Current status and challenges in the drug treatment for fibrotic nonalcoholic steatohepatitis. Acta Pharmacol Sin. 2022, 43:1191-1199. 10.1038/s41401-021-00822-1
132. Menezes Junior, A. d. S, Oliveira, et al.: Dual PPRαϒ Agonists for the Management of Dyslipidemia: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. J Clin Med. 2023, 12:5674. 10.3390/jcm12175674
133.Montagnani M, Chen H, Barr VA, Quon MJ: Insulin-stimulated activation of eNOS is independent of Ca²⁺ but requires phosphorylation by Akt at Ser1179. J Biol Chem. 2001, 276:30392-8. 10.1074/jbc.M103702200
134.Chhabra M, Vidyasagar K, Gudi SK, et al.: Efficacy and safety of saroglitazar for the management of dyslipidemia: A systematic review and meta-analysis of interventional studies. PLoS One. 2022, 17(1):0269531. 10.1371/journal.pone.0269531