Abstract View

Author(s): Mrs. Monisha S.1

Email(s): 1malarsuthakar@gmail.com

Address:

    Assistant Professor, School of Pharmacy, Sathyabama Institute of Science and Technology, Chennai.

Published In:   Volume - 4,      Issue - 3,     Year - 2025

DOI: https://doi.org/10.71431/IJRPAS.2025.4310  

 View HTML        View PDF

Please allow Pop-Up for this website to view PDF file.

ABSTRACT:
There is currently an unmet need for effective treatment of chronic kidney disease (CKD) that slows disease progression, prevents development of end-stage kidney disease and cardiovascular disease, and prolongs survival of patients with CKD. In the last 20 years, the only agents to show a reduction in the risk of CKD progression in patients with and without type 2 diabetes (T2D) were angiotensin-converting enzyme inhibitors and angiotensin receptor blockers, but neither drug class has provided a decreased risk of all-cause mortality in patients with CKD and evidence for their use in patients with CKD without T2D is relatively limited. This review discusses the mechanisms underlying the progression of CKD, its associated risk factors, and summarizes the potential therapeutic approaches for managing CKD. There is increasing evidence to support the role of sodium–glucose cotransporter 2 (SGLT2) inhibitor therapy in patients with CKD, including data from the designated kidney outcome trials in patients with T2D (CREDENCE) and in patients with or without T2D (DAPA-CKD). These studies showed a significant reduction in the risk of CKD progression with canagliflozin (in patients with T2D) or dapagliflozin (in patients with or without T2D), respectively, with DAPA-CKD being the first trial to show a reduced risk of all-cause mortality. On the basis of these data, individualized treatment with SGLT2 inhibitors represents a promising therapeutic option for patients with diabetic and nondiabetic CKD to slow disease progression.

Cite this article:
Mrs. Monisha S. Chronic Kidney Disease - Evolving Treatments. IJRPAS, March 2025; 4 (3): 69-78DOI: https://doi.org/https://doi.org/10.71431/IJRPAS.2025.4310


REFERENCE

1.      Perkovic V, Heerspink HL, Chalmers J, et al. Intensive glucose control improves kidney outcomes in patients with type 2 diabetes. Kidney Int. 2013;83: 517–23.

2.      Szczech LA, Stewart RC, Su HL, et al. Primary care detection of chronic kidney disease in adults with 160 Adv Ther (2022) 39:148–164 type-2 diabetes: the ADD-CKD Study (awareness, detection and drug therapy in type 2 diabetes and chronic kidney disease). PLoS One. 2014;9: e110535.

3.      Halimi S, Verges B. Adverse effects and safety of SGLT-2 inhibitors. Diabetes Metab. 2014;40 (6Suppl 1): S28-34. doi: 10.1016/s1262-3636(14)72693-x.

4.      Tsimihodimos V, Filippatos TD, Elisaf MS. Effects of sodium-glucose co-transporter 2 inhibitors on metabolism: unanswered questions and controversies. Expert Opin Drug Metab Toxicol. 2017;13(4):399 – 408. doi: 10.1080/17425255.2017.1258055

5.      Dekkers CCJ, Wheeler DC, Sjostrom CD, et al. Effects of the sodium-glucose co-transporter 2 inhibitor dapagliflozin in patients with type 2 diabetes and Stages 3b-4 chronic kidney disease. Nephrol Dial Transplant. 2018;33(11):2005–2011. doi: 10.1093/ndt/gfx350.

6.      Li J, Gong Y, Li C,  et al,. Long-term efficacy and safety of sodium-glucose cotransporter-2 inhibitors as add-on to metformin treatment in the management of type 2 diabetes mellitus: a meta-analysis. Medicine, 2017; 96(27): e7201. Endocrine Rev, 2016; 37:278–316.

7.      Fioretto P, Del Prato S, Buse JB, et al. Efficacy and safety of dapagliflozin in patients with type 2 diabetes and moderate renal impairment (chronic kidney disease stage 3A): The DERIVE Study. Diabetes Obes Metab. 2018;20(11):2532–2540. doi: 10.1111/dom.13413.

8.       Perkovic V, de Zeeuw D, Mahaffey KW, et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials. Lancet Diabetes Endocrinol. 2018; 6:691–704.

9.      Mosenzon O, Wiviott SD, Cahn A, et al. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomized trial. Lancet Diabetes Endocrinol. 2019; 7:606–17.

 

10.   Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019; 380:2295–306.

11.   Hou X, Wan X, Wu B. L Cost-effectiveness of Canagliflozin versus Dapagliflozin added to metformin in patients with type 2 diabetes in China. Front Pharmacol, 2019; 10:480.

12.   Heerspink HJ, Stefansson BV, Correa-Rotter R, et al. Dapagliflozin in patients with chronic   kidney disease. N Engl J Med. 2020; 383:1436–46. 13.

13.   Herat LY, Magno AL, Rudnicka C, et al. SGLT2 inhibitor-induced sympathoinhibition: a novel mechanism for cardiorenal protection. JACC Basic Transl Sci. 2020; 5:169–79.

14.   Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al. DAPA-CKD Trial Committees and   Investigators. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020; 383(15): 1436–1446, doi: 10.1056/NEJMoa2024816, indexed in PubMed: 32970396.

15.   Bonora BM, Avogaro A, Fadini GP. Extra glycemic effects of SGLT2 inhibitors: a review of the evidence. Diabetes Metab Syndr Obes. 2020; 13: 161–174, doi: 10.2147/DMSO. S233538, indexed in PubMed: 32021362.

16.   Kalluri SR, Bhutta TH, Hannoodee H, et al. Do SGLT2 inhibitors improve cardio-renal     outcomes in patients with type II diabetes mellitus: a systematic review. Cureus 2021; 13(9): e17668, doi: 10.7759; Cureus.17668, indexed in PubMed: 34650848.

17.  Guo J, Smith SM. Newer drug treatments for type 2 diabetes. BMJ. 2021; 373: n1171, doi: 10.1136/bmj. n1171, indexed in PubMed: 33975861

18.  Heerspink HJ, Cherney D, Postmus D, et al. A prespecified analysis of the Dapagliflozin and     Prevention of Adverse Outcomes in Chronic Kidney Disease (DAPA-CKD) randomized controlled trial on the incidence of abrupt declines in kidney function. Kidney Int. 2021.

19.  Mistry S, Eschler DC. Euglycemic diabetic ketoacidosis caused by SGLT2 inhibitors and a ketogenic diet: a case series and review of literature. AACE Clin Case Rep. 2021; 7:17–9.

20.  Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy [supplemental appendix]. N Engl J Med. 2019; 380:2295–306. https://doi.org/10.1056/ NEJMoa1811744/suppl_filenejmoa_appendix.pdf. Accessed 5 Oct 2021.

21.  Horii T, Oikawa Y, Kunisada N, et al,. Acute kidney injury in Japanese type 2 diabetes patients receiving sodium-glucose cotransporter 2 inhibitors: a nationwide cohort study. J Diabetes Investing. 2022;13(1):42–6.

22.  Chandie Shaw PK, Vandenbroucke JP, TjandraYI, et al,. Increased end-stage diabetic nephropathy in Indo-Asian immigrants living in the Netherlands. Diabetologia  45:337 – 341, 2002.

23.  Hiddo J.L. Heerspink, Bruce A. Perkins, David H. Fitchett, et al,: Sodium Glucose Cotransporter 2 Inhibitors in the Treatment of Diabetes Mellitus Originally publishedhttps://doi.org/10.1161/CIRCULATIONAHA.116.021887. Circulation. 2016; 134:752 –772.

24.  Haitao Zhang; Jingyuan Xie; Chuanming Hao; et al,: Finerenone in Patients with Chronic Kidney Disease and Type 2 Diabetes: The FIDELIO-DKD Subgroup from China. Kidney Dis (2023) 9 (6): 498–506.https://doi.org/10.1159/000531997.

25.  S ShaD PolidoriK Farrellet al, : Pharmacodynamic differences between canagliflozin and dapagliflozin: results of a randomized, double-blind, crossover study. PMID: 25421015 PMCID: PMC6680204 DOI: 10.1111/dom.12418.

26.  John A. Spertus, Mary C. Birmingham, Michael Nassif, et al, The SGLT2 inhibitor canagliflozin in heart failure: the CHIEF-HF remote, patient-centered randomized trial.

27.  Kenneth W. Mahaffey, Meg J. Jardine, Severine Bompoint, et al,. Canagliflozin and Cardiovascular and Renal Outcomes in Type 2 Diabetes Mellitus and Chronic   Kidney Disease in Primary and Secondary Cardiovascular Prevention Groups.

28.  Hiddo J. L. Heerspink, Paul Perco, et al., Canagliflozin reduces inflammation and fibrosis  biomarkers: a potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease.

29.  Vlado Perkovic, Meg J. Jardine, Bruce Neal, et al,. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy.

30.  [30] Brendon L Neuen, Megumi Oshima, Vlado Perkovic, et al,. Effects of canagliflozin on serum potassium in people with diabetes and chronic kidney disease: the CREDENCE trial.

31.  Michał Nowicki1. Dapagliflozin — a breakthrough in the treatment of chronic kidney disease from the perspective of the DAPA-CKD study.

32.  S.Sha, D. Polidori, K. Farrell, et al,. Pharmacodynamic differences between canagliflozin and dapagliflozin: results of a randomized, double-blind, crossover study.

33.  A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy.

34.  David C. Wheeler, Robert D. Toto, et al,. Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: a prespecified analysis from the DAPA-CKD trial.

35.  Jiaojiao Liu, Jingyi Cui, Xiaoyan Fang, et al,. Efficacy and Safety of Dapagliflozin in Children with Inherited Proteinuric Kidney Disease: A Pilot Study.

36.  Christian W. Mende. Chronic Kidney Disease and SGLT2 Inhibitors: A Review of the Evolving Treatment Landscape.

37.  Katherine R. Tuttle; Frank C. Brosius, III; Matthew A. Cavender; et al,. SGLT2 Inhibition for CKD and Cardiovascular Disease in Type 2 Diabetes: Report of a Scientific Workshop Sponsored by the National Kidney Foundation.

38.  Rey IsidtoORCID Icon, Romina Danguilan, Oscar NaidasORCID Icon, et al, Emerging Role of Sodium–Glucose Co-Transporter 2 Inhibitors for the Treatment of Chronic Kidney Disease.

39.  Wiviott SD, Raz I, Bonaca MP, et al; Dapagliflozin and cardiovascular outcomes in type 2 diabetes.N Engl J Med. 2019; 380:347–DECLARE–TIMI 58 Investigators. doi:10.1056/NEJMoa1812389CrossrefMedlineGoogle Scholar.

40.  Thomas A. Zelniker, MD, MSc1; Itamar Raz, MD2; Ofri Mosenzon, MD, et al, Effect of Dapagliflozin on Cardiovascular Outcomes According to Baseline Kidney Function and Albuminuria Status in Patients With Type 2 Diabetes - A Prespecified Secondary Analysis of a Randomized Clinical Trial. JAMA Cardiol. 2021;6(7):801-810. doi:10.1001/jamacardio.2021.0660.

41.  Thomas A Zelniker, Stephen D Wiviott, Prof Itamar Raz, et al, SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials.

42.  Albarrán OG, Ampudia-Blasco FJ. Dapagliflozina, et al, primer inhibitor SGLT 2 en el tratamiento de la diabetes tipo 2 [Dapagliflozin, the first SGLT-2 inhibitor in the treatment of type 2 diabetes]. Med Clin (Barc). 2013 Sep;141 Suppl 2:36-43. Spanish. doi: 10.1016/S0025-7753(13)70062-9.

43.  Nachiket S. Dighe, Ganesh S. Shinde, Vikas B. Shinde. Simultaneous Estimation and Validation of Canagliflozin and Metformin Hydrochloride in Bulk and Pharmaceutical Dosage Form by using RP-HPLC. Received on 12.06.2019; Modified on 19.07.2019; Accepted on 20.08.2019; Research J. Pharm. and Tech. 2019; 12(10):4953-4957. DOI: 10.5958/0974-360X.2019. 00859.

 


Related Images:



Recent Images



A Review on Diabetes Mellitus: Type1 & Type2
Formulation and Evaluation of Herbal Hair Mask
FT-IR and UV-Vis Spectroscopic studies of Cd(II), Hg(II) and Zn(II)  metal complexes of 2-methoxy-2
FT-IR and UV-Vis Spectroscopic studies of Co(II), Cu(II) and Mn(II) metal complexes of 2-methoxy-2
Simultaneous UV Spectrophotometric Analysis of Paracetamol and Ibuprofen in an Ethanol–NaoH Solvent System
A Review on Antiseptic Gargle
Formulation and Characterisation of Papaya Leaf Gel
Formulation and Characterisation of Herbal Neem Soap
Formulation and Evaluation of Herbal Hair Serum
Pharmaceutical Marketing Role to Adapt Drug Promotional Practices at the duration times  of Pandemic Covid-19

Tags


Recomonded Articles:

Author(s): Bhagyashri C. Patel; Sandhya R. Chavhan; H.P. Suryawanshi; R. A. Ahirrao

DOI:         Access: Open Access Read More

Author(s): Pravin V. Gomase; R. R. Patil; Sunil P. Pawar

DOI: NA         Access: Open Access Read More

Author(s): Shaikh Aminoddin Raisoddin; Shifa Maniya; Sayeeda Begum; Naziya Shaikh.

DOI:         Access: Open Access Read More

Author(s): Hasanen Pinjari; Rehan Deshmukh; Khan Faizan; Dr. Gulam Javed.

DOI:         Access: Open Access Read More

Author(s): Kamil Hafiz Anees Ahmed Quazi; Dr. Majaz Quazi; Wasil Jalees Quazi; Dr. G. J. Khan.

DOI:         Access: Open Access Read More

Author(s): Harshadeep Seal; Namrata Koushik

DOI:         Access: Open Access Read More

Author(s): Shah Kaunen; Pathan Ahemad; Shah Sahil; Khatik Ali; Abdul Kashif; Abu Asim Azmi

DOI:         Access: Open Access Read More

Author(s): Devadatta Pandurang Hatim; Sachinkumar V. Patil; Sachin Mali

DOI:         Access: Open Access Read More

Author(s): Venkatesh; Chaithra N; Parthasarathi K Kulkarni; Siddartha H N; Hanumanthachar Joshi K

DOI:         Access: Open Access Read More

Author(s): Girisha Chaudhari;Sofiya Morris; Dr. Ashish Jain

DOI:         Access: Open Access Read More

Author(s): Mehul P. Bagde; Mukesh Rajpurohit; Lalit Chaudhary

DOI:         Access: Closed Access Read More

Author(s): Sarang Chavan; Dr. Gulam Javed Khan

DOI:         Access: Open Access Read More

Author(s): Apurva Arabhavi; Manisha Mane; Neha Desap Sachin Mali; Akanksha Sawant.

DOI:         Access: Open Access Read More

Author(s): Mansoori Safwan Salim; Prof. Rehan Deshmuhk; Dr. G.J. Khan; Shaikh Amaan; Sayyed Ahamad Sayyed Kaleem; Hamza Iliyas Amliwala

DOI:         Access: Open Access Read More

Author(s): Mohammad Zaid*; Prof. Imran Kalam; Dr. Quazi Majaz

DOI:         Access: Open Access Read More

Author(s): Mahesh Dilip Mane; Nilesh Shashikant Patole; Vetal Nana Kodalkar; Sanket Arun Metkari.

DOI:         Access: Open Access Read More

Author(s): Quazi Kamil Hafiz Anees Ahemad; Dr. Majaz Quazi; Quazi Wasil; Dr. G. J. Khan

DOI:         Access: Open Access Read More

Author(s): Lilachand B. Patil; Khushal K. Chaudhari; Eknath Jagannath Patil

DOI:         Access: Open Access Read More

Author(s): Soni Rishita1*, Salunke Khushi1, Patel Harsh1, Patel Aastha1, Taufik Mulla2, Ambika Nand Jha3

DOI:         Access: Open Access Read More