Abstract View

Author(s): Fadilullahi Opeyemi Ibiyemi¹*1, Deborah Awoniran²2, Anthony Godswill Imolele²3, Ismail Kolawole Odetayo³4, Lawal Fatimah Ayomide³5

Email(s): 1ibiyemi.ademola97@gmail.com

Address:

    11. Department of Chemistry & Industrial Chemistry, Osun State Water Regulatory Commission, Ministry of Water Resources, Osun State, Nigeria 2. Miami University Ohio, Zip code: 45056-1846, United State of America
    2Ambrose Alli University, Ekpoma, 310104, Edo, Nigeria 3. Department of Biochemistry & Industrial Chemistry Fountain University, P.M.B. 4491 Osogbo Osun State, Nigeria
    Babcock University, Ogun State, Nigeria

Published In:   Volume - 4,      Issue - 10,     Year - 2025

DOI: https://doi.org/10.71431/IJRPAS.2025.41003  

 View HTML        View PDF

Please allow Pop-Up for this website to view PDF file.

ABSTRACT:
Urinary tract infections (UTIs) are some of the most prevalent infectious diseases around the globe, affecting about 150 million people every year and putting a considerable strain on healthcare systems, both financially and clinically. This comprehensive review takes a closer look at the current landscape of UTI treatment, shining a light on first-line antimicrobial agents like nitrofurantoin, trimethoprim-sulfamethoxazole, and fosfomycin, as well as alternative options such as fluoroquinolones, beta-lactams, aminoglycosides, and carbapenems. The review dives into how these treatments function, their effectiveness, and the emerging patterns of resistance, particularly the growing concern of antimicrobial resistance in common uropathogens, especially Escherichia coli. While there are established guidelines recommending specific first-line therapies, a noticeable gap remains between the evidence and what actually occurs in clinical practice, with fluoroquinolones like ciprofloxacin often being overprescribed for uncomplicated infections. The rising presence of multidrug-resistant organisms, such as extended-spectrum beta-lactamase-producing Enterobacterales, necessitates a careful reassessment of treatment strategies and a commitment to antimicrobial stewardship. With resistance rates exceeding 50% in certain regions for commonly used antibiotics, there's an urgent need for innovative treatment strategies, enhanced surveillance systems, and responsible antibiotic use to preserve the effectiveness of current therapies and address the escalating threat of antimicrobial resistance in managing UTIs.

Cite this article:
Fadilullahi Opeyemi Ibiyemi, Deborah Awoniran, Anthony Godswill Imolele, Ismail Kolawole Odetayo, Lawal Fatimah Ayomide. Evidence-Based Management of Urinary Tract Infections: Balancing Efficacy, Safety, and Antimicrobial Stewardship. IJRPAS, October 2025; 4(10): 26-49.DOI: https://doi.org/https://doi.org/10.71431/IJRPAS.2025.41003


1.      Kaur A, Kaur J. Urinary Tract Infection: A Review. J Clin Diagn Res. 2020;14(1):1-5.

2.      Mancuso C, Al-Hassani A, Bazzaz M. Urinary Tract Infection: A Comprehensive Review. Microbiol Res. 2023;14(2):10-25.

3.      Addis Z, Mekonnen A, Ayenew F, Fentaw S, Biazin M. Prevalence and antimicrobial resistance patterns of uropathogens among patients attending Felege Hiwot Referral Hospital, Bahir Dar, Northwest Ethiopia. Int J Infect Dis. 2021;107:231-237.

4.      Yang S, Liu X, Zhang Y, et al. Global burden of urinary tract infections: a systematic analysis. Lancet. 2022;399(10332):1350-1361.

5.      Flores‐Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015;13(5):269-284.

6.      Gajdács M, Ábrók M, Lázár A, Burián K. The Economic and Clinical Burden of Urinary Tract Infections: A Mini-Review. Antibiotics (Basel). 2020;9(11):775.

7.      He J, Chen L, Wang J, et al. Global Trends in Urosepsis Mortality: A Study of the GBD Database. Crit Care Med. 2025;53(1):100-108.

8.      Zhu H, Li M, Zhang L, et al. Risk factors and prevalence of urinary tract infections in the elderly population: a systematic review and meta-analysis. J Gerontol A Biol Sci Med Sci. 2024;79(5):e123-e134.

9.      Whelan M, Lucey B, Finn T. Urinary tract infection in the elderly: clinical and microbiological aspects. Clin Interv Aging. 2023;18:1200-1215.

10.  Sujith S, Solomon P, Rayappan M. Non-bacterial pathogens causing urinary tract infections: a review. Future Microbiol. 2024;19(3):145-160.

11.  Wnorowska K, Błażejewska K, Mikuła E, et al. Biofilm formation in uropathogens: molecular mechanisms and clinical significance. Microorganisms. 2022;10(11):2200.

12.  Strazzulla A, Zuffa E, Mussi C. Antimicrobial stewardship in urinary tract infections: a systematic review. J Antimicrob Chemother. 2023;78(7):1650-1665.

13.  Ngoi C, Lam W, Ng W, et al. Effectiveness of short-course antibiotics for uncomplicated urinary tract infections: a systematic review. Int J Clin Pharm. 2021;43(5):1300-1310.

14.  Krinner R, Schedl H, Wagner T. Discrepancy between guidelines and clinical practice in the treatment of uncomplicated urinary tract infections: a German study. Infection. 2024;52(1):15-23.

15.  Kanjilal M, Sarkar S, Deb A. Fluoroquinolone overuse and its impact on antimicrobial resistance: a review. Indian J Med Res. 2020;151(6):530-540.

16.  Yoon SH, Kim J, Kim KH, Yu J. Trends in antibiotic resistance among uropathogens: implications for empirical treatment. Int J Antimicrob Agents. 2024;63(2):106-112.

17.  Paranos A, Pešaković M, Mićić M. Nitrofurantoin: mechanism of action and resistance. J Chem. 2022;2022:1-12.

18.  Greener M. Nitrofurantoin: still a valuable drug for uncomplicated UTI. Hosp Pract. 2008;36(4):112-114.

19.  McOsker CC, Fitzpatrick PM. Nitrofurantoin: mechanism of action and clinical effectiveness in the context of antimicrobial resistance. Diagn Microbiol Infect Dis. 1994;19(1):21-27.

20.  Su J, Wang Y, Hu H, et al. Membrane-damaging hydantoin-derived antimicrobials overcome resistance in Gram-positive bacteria. Chem Sci. 2017;8(5):3725-3730.

21.  Dos Santos H, Lima G, Mendes D, et al. Physicochemical and biological properties of nitrofurantoin: a comprehensive review. Braz J Pharm Sci. 2021;57(4):e18585.

22.  Jaffe JM. Effect of altered gastrointestinal transit on nitrofurantoin absorption. Clin Pharmacol Ther. 1975;18(3):361-365.

23.  Munoz-Davila MJ. Nitrofurantoin. Int J Antimicrob Agents. 2014;44(3):205-212.

24.  Wang J, Yin Y, Wang C, et al. The mechanism of nitrofurantoin-induced organ toxicity: a review of current literature. Chem Biol Interact. 2008;175(1-3):23-29.

25.  Cunha B. Nitrofurantoin: mechanisms of action and drug interactions. J Med. 1989;20(3-4):287-295.

26.  Vickery R, Venter J, Naidoo S. Nitrofurantoin-induced lung injury: a case series and review of literature. S Afr Med J. 2022;112(1):47-52.

27.  Tan Y, Lu J, Li Y. Adverse reactions associated with nitrofurantoin: a systematic review. Drug Saf. 2012;35(10):801-815.

28.  Abdel-Messih I, Khalil M, Abu-Elyazeed R. Trimethoprim-sulfamethoxazole: a review of its use in bacterial infections. J Infect Chemother. 1984;11(3):200-210.

29.  Supuran CT. Sulfonamides and sulfonamide-derived drugs as inhibitors of bacterial and human carbonic anhydrases. Future Med Chem. 2017;9(10):1135-1153.

30.  Bhardwaj S, Sharma R, Singh K. Synergistic action of trimethoprim and sulfamethoxazole: a brief review. J Basic Appl Res. 2016;2(3):120-125.

31.  Herbert V. Inhibition of dihydrofolate reductase by trimethoprim: implications for folate deficiency. Clin Invest Med. 1973;2(1):21-24.

32.  Wormser GP, Keusch GT, Butler T. Co-trimoxazole: an update. Ann Intern Med. 1982;96(3):305-313.

33.  Choquet-Kastylevsky G, Chantalat-Auger C, De Biasi C. Hypersensitivity reactions to sulfonamides: a review. Ann Allergy Asthma Immunol. 2002;89(5):450-460.

34.  Asyraf Y, Ahmad Z, Daud W. Inflammatory and immune reactions in sulfonamide-induced hypersensitivity. World Allergy Organ J. 2022;15(4):100645.

35.  Slatore CG, Tilles SA. Sulfonamide hypersensitivity: diagnostic challenges and clinical manifestations. J Allergy Clin Immunol. 2004;114(2):440-444.

36.  Falagas M, Giannopoulou K, Kokolakis A, et al. Fosfomycin: use beyond urinary tract and gastrointestinal infections. Clin Infect Dis. 2009;48(12):1743-1750.

37.  Cao J, Li X, Liu Y. Molecular mechanism of action of fosfomycin: a review. Curr Drug Metab. 2019;20(10):780-790.

38.  Múñez R, Montoro-Ferrer S, Martínez-García A. Fosfomycin against multidrug-resistant bacteria: a valuable ally in the fight against antimicrobial resistance. Antibiotics (Basel). 2019;8(4):166.

39.  Johansen S, Nielsen T, Christensen J. Fosfomycin in prophylaxis and treatment of infections following transrectal prostate biopsy: a systematic review. Infect Dis (Lond). 2021;53(7):477-485.

40.  López-Montesinos I, Ruiz J, Ocampo L, et al. Fosfomycin: an old antibiotic for new challenges in complicated urinary tract infections. Int J Antimicrob Agents. 2019;54(1):20-25.

41.  López-Montesinos I, Ruiz J, Ocampo L, et al. Fosfomycin: an old antibiotic for new challenges in complicated urinary tract infections. Int J Antimicrob Agents. 2019;54(1):20-25.

42.  Seroy J, Khoukaz T, Shur J, et al. Clinical experience with oral fosfomycin for multidrug-resistant urinary tract infections. J Antimicrob Chemother. 2019;74(5):1377-1383.

43.  Serwacki J, Klesiewicz K, Michalska A. The use of fluoroquinolones in combating bacterial pathogens: a historical and contemporary perspective. J Chemother. 2023;35(4):250-260.

44.  Lungu I, Chirita I, Radulescu A. Fluoroquinolones: evolution, spectrum of activity, and clinical applications. Rev Chim (Bucharest). 2022;73(10):2400-2410.

45.  Reddy S, Das S, Mohanty S. Fluoroquinolone resistance mechanisms in Escherichia coli: a systematic review. J Infect Public Health. 2020;13(9):1240-1250.

46.  Zahra R. Carbapenems: a comprehensive review of their classification, mechanisms of action and resistance. J Appl Pharm Sci. 2021;11(2):001-012.

47.  Zhang GF, Liu X, Zhang S, Pan B, Liu ML. Ciprofloxacin derivatives and their antibacterial activities. Eur J Med Chem. 2018;146:599-612.

48.  Andersson MI. Development of the quinolones. J Antimicrob Chemother. 2003;51(suppl 1):1-11.

49.  Aldred KJ, Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance. Biochemistry. 2014;53(10):2155-2164.

50.  Zamudio R, Benavides JA, Bromfield ES, Labuschagne N, Towner KJ. Cephalosporin resistance mechanisms in Gram-negative bacteria: global patterns and clinical implications. Antimicrob Resist Infect Control. 2022;11(1):45.

51.  Attipoe DA, Sekyere JO, Mbelle NM, Maningi NE. Phenotypic and molecular characterisation of fluoroquinolone resistance mechanisms in Enterobacteriaceae in Ghana. Ann Clin Microbiol Antimicrob. 2020;19(1):1-12.

52.  Bellucci MC, Volonterio A, Molinari H. Aminoglycoside resistance mechanisms: structural insights and therapeutic implications. Curr Opin Struct Biol. 2024;84:102-113.

53.  Albert X, Huertas I, Pereiró II, Sanfélix J, Gosalbes V, Perrota C. Antibiotics for preventing recurrent urinary tract infection in non-pregnant women. Cochrane Database Syst Rev. 2004;(3):CD001209.

54.  Acheampong K, Kwakye-Nuako G, Asante KP, Asmah RH, Boateng R, Gyasi RK. Antimicrobial susceptibility of Salmonella enterica serovar Typhi isolated from patients in Ghana: A ten-year review. BMC Infect Dis. 2019;19(1):676.

55.  Dalhoff A. Global fluoroquinolone resistance epidemiology and implications for clinical use. Interdiscip Perspect Infect Dis. 2012;2012:976273.

56.  Ahmed MO, Clegg PD, Williams NJ, Baptiste KE, Bennett M. Antimicrobial resistance in bacteria isolated from farm animals in the UK: A systematic review. Vet Rec. 2020;186(13):e19.

57.  Bradley JS, Garau J, Lode H, Rolston KV, Wilson SE, Quinn JP. Carbapenems in clinical practice: a guide to their use in serious infection. Int J Antimicrob Agents. 1999;11(2):93-100.

58.  Serwacki J, Klesiewicz K, Michalska A. The use of fluoroquinolones in combating bacterial pathogens: a historical and contemporary perspective. J Chemother. 2023;35(4):250-260.

59.  Lungu I, Chirita I, Radulescu A. Fluoroquinolones: evolution, spectrum of activity, and clinical applications. Rev Chim (Bucharest). 2022;73(10):2400-2410.

60.  Wang J, Yin Y, Wang C, et al. The mechanism of nitrofurantoin-induced organ toxicity: a review of current literature. Chem Biol Interact. 2008;175(1-3):23-29.

61.  Paranos A, Pešaković M, Mićić M. Nitrofurantoin: mechanism of action and resistance. J Chem. 2022;2022:1-12.

62.  McOsker CC, Fitzpatrick PM. Nitrofurantoin: mechanism of action and clinical effectiveness in the context of antimicrobial resistance. Diagn Microbiol Infect Dis. 1994;19(1):21-27.

63.  Andersson MI. Development of the quinolones. J Antimicrob Chemother. 2003;51(suppl 1):1-11.

64.  Aldred KJ, Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance. Biochemistry. 2014;53(10):2155-2164.

65.  Zamudio R, Benavides JA, Bromfield ES, Labuschagne N, Towner KJ. Cephalosporin resistance mechanisms in Gram-negative bacteria: global patterns and clinical implications. Antimicrob Resist Infect Control. 2022;11(1):45.

66.  Attipoe DA, Sekyere JO, Mbelle NM, Maningi NE. Phenotypic and molecular characterisation of fluoroquinolone resistance mechanisms in Enterobacteriaceae in Ghana. Ann Clin Microbiol Antimicrob. 2020;19(1):1-12.

67.  Bellucci MC, Volonterio A, Molinari H. Aminoglycoside resistance mechanisms: structural insights and therapeutic implications. Curr Opin Struct Biol. 2024;84:102-113.

68.  Albert X, Huertas I, Pereiró II, Sanfélix J, Gosalbes V, Perrota C. Antibiotics for preventing recurrent urinary tract infection in non-pregnant women. Cochrane Database Syst Rev. 2004;(3):CD001209.

69.  Acheampong K, Kwakye-Nuako G, Asante KP, Asmah RH, Boateng R, Gyasi RK. Antimicrobial susceptibility of Salmonella enterica serovar Typhi isolated from patients in Ghana: A ten-year review. BMC Infect Dis. 2019;19(1):676.

70.  Dalhoff A. Global fluoroquinolone resistance epidemiology and implications for clinical use. Interdiscip Perspect Infect Dis. 2012;2012:976273.

71.  Ahmed MO, Clegg PD, Williams NJ, Baptiste KE, Bennett M. Antimicrobial resistance in bacteria isolated from farm animals in the UK: A systematic review. Vet Rec. 2020;186(13):e19.

72.  Bradley JS, Garau J, Lode H, Rolston KV, Wilson SE, Quinn JP. Carbapenems in clinical practice: a guide to their use in serious infection. Int J Antimicrob Agents. 1999;11(2):93-100.

73.  Serwacki J, Klesiewicz K, Michalska A. The use of fluoroquinolones in combating bacterial pathogens: a historical and contemporary perspective. J Chemother. 2023;35(4):250-260.

74.  Lungu I, Chirita I, Radulescu A. Fluoroquinolones: evolution, spectrum of activity, and clinical applications. Rev Chim (Bucharest). 2022;73(10):2400-2410.

75.  Wang J, Yin Y, Wang C, et al. The mechanism of nitrofurantoin-induced organ toxicity: a review of current literature. Chem Biol Interact. 2008;175(1-3):23-29.

76.  Paranos A, Pešaković M, Mićić M. Nitrofurantoin: mechanism of action and resistance. J Chem. 2022;2022:1-12.

77.  McOsker CC, Fitzpatrick PM. Nitrofurantoin: mechanism of action and clinical effectiveness in the context of antimicrobial resistance. Diagn Microbiol Infect Dis. 1994;19(1):21-27.

78.  Andersson MI. Development of the quinolones. J Antimicrob Chemother. 2003;51(suppl 1):1-11.

79.  Aldred KJ, Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance. Biochemistry. 2014;53(10):2155-2164.

80.  Zamudio R, Benavides JA, Bromfield ES, Labuschagne N, Towner KJ. Cephalosporin resistance mechanisms in Gram-negative bacteria: global patterns and clinical implications. Antimicrob Resist Infect Control. 2022;11(1):45.

81.  Attipoe DA, Sekyere JO, Mbelle NM, Maningi NE. Phenotypic and molecular characterisation of fluoroquinolone resistance mechanisms in Enterobacteriaceae in Ghana. Ann Clin Microbiol Antimicrob. 2020;19(1):1-12.

82.  Bellucci MC, Volonterio A, Molinari H. Aminoglycoside resistance mechanisms: structural insights and therapeutic implications. Curr Opin Struct Biol. 2024;84:102-113.

83.  Albert X, Huertas I, Pereiró II, Sanfélix J, Gosalbes V, Perrota C. Antibiotics for preventing recurrent urinary tract infection in non-pregnant women. Cochrane Database Syst Rev. 2004;(3):CD001209.

84.  Acheampong K, Kwakye-Nuako G, Asante KP, Asmah RH, Boateng R, Gyasi RK. Antimicrobial susceptibility of Salmonella enterica serovar Typhi isolated from patients in Ghana: A ten-year review. BMC Infect Dis. 2019;19(1):676.

85.  Dalhoff A. Global fluoroquinolone resistance epidemiology and implications for clinical use. Interdiscip Perspect Infect Dis. 2012;2012:976273.

86.  Ahmed MO, Clegg PD, Williams NJ, Baptiste KE, Bennett M. Antimicrobial resistance in bacteria isolated from farm animals in the UK: A systematic review. Vet Rec. 2020;186(13):e19.

87.  Bradley JS, Garau J, Lode H, Rolston KV, Wilson SE, Quinn JP. Carbapenems in clinical practice: a guide to their use in serious infection. Int J Antimicrob Agents. 1999;11(2):93-100.

88.  Serwacki J, Klesiewicz K, Michalska A. The use of fluoroquinolones in combating bacterial pathogens: a historical and contemporary perspective. J Chemother. 2023;35(4):250-260.

89.  Lungu I, Chirita I, Radulescu A. Fluoroquinolones: evolution, spectrum of activity, and clinical applications. Rev Chim (Bucharest). 2022;73(10):2400-2410.

90.  Wang J, Yin Y, Wang C, et al. The mechanism of nitrofurantoin-induced organ toxicity: a review of current literature. Chem Biol Interact. 2008;175(1-3):23-29.

91.  Paranos A, Pešaković M, Mićić M. Nitrofurantoin: mechanism of action and resistance. J Chem. 2022;2022:1-12.

92.  McOsker CC, Fitzpatrick PM. Nitrofurantoin: mechanism of action and clinical effectiveness in the context of antimicrobial resistance. Diagn Microbiol Infect Dis. 1994;19(1):21-27.

93.  Andersson MI. Development of the quinolones. J Antimicrob Chemother. 2003;51(suppl 1):1-11.

94.  Cunha BA. Antibiotic side effects. Med Clin North Am. 2001;85(1):149-185.

95.  Cui N, Bian X. Fluoroquinolone-associated tendinopathy: a systematic review. J Clin Pharm Ther. 2021;46(4):927-939.

96.  Albert X, Huertas I, Pereiró II, Sanfélix J, Gosalbes V, Perrota C. Antibiotics for preventing recurrent urinary tract infection in non-pregnant women. Cochrane Database Syst Rev. 2004;(3):CD001209.

97.  Bradley JS, Garau J, Lode H, Rolston KV, Wilson SE, Quinn JP. Carbapenems in clinical practice: a guide to their use in serious infection. Int J Antimicrob Agents. 1999;11(2):93-100.

98.  Serwacki J, Klesiewicz K, Michalska A. The use of fluoroquinolones in combating bacterial pathogens: a historical and contemporary perspective. J Chemother. 2023;35(4):250-260.

99.  Lungu I, Chirita I, Radulescu A. Fluoroquinolones: evolution, spectrum of activity, and clinical applications. Rev Chim (Bucharest). 2022;73(10):2400-2410.

100. Wang J, Yin Y, Wang C, et al. The mechanism of nitrofurantoin-induced organ toxicity: a review of current literature. Chem Biol Interact. 2008;175(1-3):23-29.

101. Paranos A, Pešaković M, Mićić M. Nitrofurantoin: mechanism of action and resistance. J Chem. 2022;2022:1-12.

102. McOsker CC, Fitzpatrick PM. Nitrofurantoin: mechanism of action and clinical effectiveness in the context of antimicrobial resistance. Diagn Microbiol Infect Dis. 1994;19(1):21-27.

103. Andersson MI. Development of the quinolones. J Antimicrob Chemother. 2003;51(suppl 1):1-11.

104. Aldred KJ, Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance. Biochemistry. 2014;53(10):2155-2164.

105. Cunha B. Nitrofurantoin: mechanisms of action and drug interactions. J Med. 1989;20(3-4):287-295.

106. Cunha BA. Antibiotic side effects. Med Clin North Am. 2001;85(1):149-185.

107. Cui N, Bian X. Fluoroquinolone-associated tendinopathy: a systematic review. J Clin Pharm Ther. 2021;46(4):927-939.

108. Albert X, Huertas I, Pereiró II, Sanfélix J, Gosalbes V, Perrota C. Antibiotics for preventing recurrent urinary tract infection in non-pregnant women. Cochrane Database Syst Rev. 2004;(3):CD001209.

109. Bradley JS, Garau J, Lode H, Rolston KV, Wilson SE, Quinn JP. Carbapenems in clinical practice: a guide to their use in serious infection. Int J Antimicrob Agents. 1999;11(2):93-100.

110. Serwacki J, Klesiewicz K, Michalska A. The use of fluoroquinolones in combating bacterial pathogens: a historical and contemporary perspective. J Chemother. 2023;35(4):250-260.

111. Lungu I, Chirita I, Radulescu A. Fluoroquinolones: evolution, spectrum of activity, and clinical applications. Rev Chim (Bucharest). 2022;73(10):2400-2410.

112. Wang J, Yin Y, Wang C, et al. The mechanism of nitrofurantoin-induced organ toxicity: a review of current literature. Chem Biol Interact. 2008;175(1-3):23-29.

113. Paranos A, Pešaković M, Mićić M. Nitrofurantoin: mechanism of action and resistance. J Chem. 2022;2022:1-12.

114. McOsker CC, Fitzpatrick PM. Nitrofurantoin: mechanism of action and clinical effectiveness in the context of antimicrobial resistance. Diagn Microbiol Infect Dis. 1994;19(1):21-27.

115. Andersson MI. Development of the quinolones. J Antimicrob Chemother. 2003;51(suppl 1):1-11.

116. Aldred KJ, Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance. Biochemistry. 2014;53(10):2155-2164.

117. Cunha B. Nitrofurantoin: mechanisms of action and drug interactions. J Med. 1989;20(3-4):287-295.

118. Cunha BA. Antibiotic side effects. Med Clin North Am. 2001;85(1):149-185.

119. Cui N, Bian X. Fluoroquinolone-associated tendinopathy: a systematic review. J Clin Pharm Ther. 2021;46(4):927-939.

120. Albert X, Huertas I, Pereiró II, Sanfélix J, Gosalbes V, Perrota C. Antibiotics for preventing recurrent urinary tract infection in non-pregnant women. Cochrane Database Syst Rev. 2004;(3):CD001209.

121. Bradley JS, Garau J, Lode H, Rolston KV, Wilson SE, Quinn P. Carbapenems in clinical practice: a guide to their use in serious infection. Int J Antimicrob Agents. 1999;11(2):93-100.

122. Serwacki J, Klesiewicz K, Michalska A. The use of fluoroquinolones in combating bacterial pathogens: a historical and contemporary perspective. J Chemother. 2023;35(4):250-260.

123. Lungu I, Chirita I, Radulescu A. Fluoroquinolones: evolution, spectrum of activity, and clinical applications. Rev Chim (Bucharest). 2022;73(10):2400-2410.

124. Wang J, Yin Y, Wang C, et al. The mechanism of nitrofurantoin-induced organ toxicity: a review of current literature. Chem Biol Interact. 2008;175(1-3):23-29.

125. Paranos A, Pešaković M, Mićić M. Nitrofurantoin: mechanism of action and resistance. J Chem. 2022;2022:1-12.

126. McOsker CC, Fitzpatrick PM. Nitrofurantoin: mechanism of action and clinical effectiveness in the context of antimicrobial resistance. Diagn Microbiol Infect Dis. 1994;19(1):21-27.

127. Andersson MI. Development of the quinolones. J Antimicrob Chemother. 2003;51(suppl 1):1-11.

128. Aldred KJ, Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance. Biochemistry. 2014;53(10):2155-2164.

129. Cunha B. Nitrofurantoin: mechanisms of action and drug interactions. J Med. 1989;20(3-4):287-295.

130. Cunha BA. Antibiotic side effects. Med Clin North Am. 2001;85(1):149-185.

131. Cui N, Bian X. Fluoroquinolone-associated tendinopathy: a systematic review. J Clin Pharm Ther. 2021;46(4):927-939.

132. Albert X, Huertas I, Pereiró II, Sanfélix J, Gosalbes V, Perrota C. Antibiotics for preventing recurrent urinary tract infection in non-pregnant women. Cochrane Database Syst Rev. 2004;(3):CD001209.

133. Bradley JS, Garau J, Lode H, Rolston KV, Wilson SE, Quinn JP. Carbapenems in clinical practice: a guide to their use in serious infection. Int J Antimicrob Agents. 1999;11(2):93-100.

134. Serwacki J, Klesiewicz K, Michalska A. The use of fluoroquinolones in combating bacterial pathogens: a historical and contemporary perspective. J Chemother. 2023;35(4):250-260.

135. Lungu I, Chirita I, Radulescu A. Fluoroquinolones: evolution, spectrum of activity, and clinical applications. Rev Chim (Bucharest). 2022;73(10):2400-2410.

136. Wang J, Yin Y, Wang C, et al. The mechanism of nitrofurantoin-induced organ toxicity: a review of current literature. Chem Biol Interact. 2008;175(1-3):23-29.

137. Paranos A, Pešaković M, Mićić M. Nitrofurantoin: mechanism of action and resistance. J Chem. 2022;2022:1-12.

138. McOsker CC, Fitzpatrick PM. Nitrofurantoin: mechanism of action and clinical effectiveness in the context of antimicrobial resistance. Diagn Microbiol Infect Dis. 1994;19(1):21-27.

139. Andersson MI. Development of the quinolones. J Antimicrob Chemother. 2003;51(suppl 1):1-11.

140. Aldred KJ, Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance. Biochemistry. 2014;53(10):2155-2164.

141.  Dunne, S., Shannon, B., Dunne, C., & Cullen, W. (2022). A review of antibiotic use in urinary tract infections in primary care and emergency departments. Antibiotics, 11(7), 890.

142. Zhai, R., Ding, X., Li, H., Yang, L., Zhao, L., & Zhang, F. (2023). Aminoglycoside resistance mechanisms: enzymatic modification and efflux pumps. Microbiology Spectrum, 11(1), e04499-22.

143. Zahra, R. (2021). Carbapenems: a comprehensive review of their classification, mechanisms of action and resistance. Journal of Applied Pharmaceutical Science, 11(2), 001-012.

144. Zamudio, R., Benavides, J. A., Bromfield, E. S., Labuschagne, N., & Towner, K. J. (2022). Cephalosporin resistance mechanisms in Gram-negative bacteria: global patterns and clinical implications. Antimicrobial Resistance & Infection Control, 11(1), 45.

Related Images:



Recent Images



Optimizing Patient Outcomes Through Evolving Roles in Pharmacy Practice: A Review of Current Trends and Future Directions
Design and Evaluation of Mucoadhesive Buccal Tablets of Loratadine Using Manila Tamarind Seed Powder
A  Herbal Soap Incorporating Orange Peel Powder: Formulation and Therapeutic Evaluation
Enhanced Topical Therapeutics: A Review on Development and Evaluation of Innovative Emulgel Formulations
AI and The Future of Drug Discovery: From Innovation to Implementation
Evidence-Based Management of Urinary Tract Infections: Balancing Efficacy, Safety, and Antimicrobial Stewardship
Medication Used in Pregnancy
Antipsychotic Medications and Patient Safety: A Systematic Analysis of Adverse Drug Reactions Across Drug Classes
Hysterectomy and Cardiometabolic Risk: A Comprehensive Review
Design and Implementation of a Digital Pharmacovigilance Support Platform: Interaction Detection, ADR Monitoring, and Reporting

Tags


Recomonded Articles:

Author(s): Dr. B. Kumar*, Chennuru Charanya, K.V. Rajasri, Shaik Abidha Begum, Mungara Rakesh Kumar, Uttukuru Poojitha.

DOI: 70-77         Access: Open Access Read More

Author(s): Fadilullahi Opeyemi Ibiyemi¹*, Deborah Awoniran², Anthony Godswill Imolele², Ismail Kolawole Odetayo³, Lawal Fatimah Ayomide³

DOI: https://doi.org/10.71431/IJRPAS.2025.41003         Access: Open Access Read More