1. Kaur
A, Kaur J. Urinary Tract Infection: A Review. J Clin Diagn Res. 2020;14(1):1-5.
2. Mancuso
C, Al-Hassani A, Bazzaz M. Urinary Tract Infection: A Comprehensive Review.
Microbiol Res. 2023;14(2):10-25.
3. Addis
Z, Mekonnen A, Ayenew F, Fentaw S, Biazin M. Prevalence and antimicrobial
resistance patterns of uropathogens among patients attending Felege Hiwot
Referral Hospital, Bahir Dar, Northwest Ethiopia. Int J Infect Dis.
2021;107:231-237.
4. Yang
S, Liu X, Zhang Y, et al. Global burden of urinary tract infections: a
systematic analysis. Lancet. 2022;399(10332):1350-1361.
5. Flores‐Mireles
AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology,
mechanisms of infection and treatment options. Nat Rev Microbiol. 2015;13(5):269-284.
6. Gajdács
M, Ábrók M, Lázár A, Burián K. The Economic and Clinical Burden of Urinary
Tract Infections: A Mini-Review. Antibiotics (Basel). 2020;9(11):775.
7. He
J, Chen L, Wang J, et al. Global Trends in Urosepsis Mortality: A Study of the
GBD Database. Crit Care Med. 2025;53(1):100-108.
8. Zhu
H, Li M, Zhang L, et al. Risk factors and prevalence of urinary tract
infections in the elderly population: a systematic review and meta-analysis. J
Gerontol A Biol Sci Med Sci. 2024;79(5):e123-e134.
9. Whelan
M, Lucey B, Finn T. Urinary tract infection in the elderly: clinical and
microbiological aspects. Clin Interv Aging. 2023;18:1200-1215.
10. Sujith
S, Solomon P, Rayappan M. Non-bacterial pathogens causing urinary tract
infections: a review. Future Microbiol. 2024;19(3):145-160.
11. Wnorowska
K, Błażejewska K, Mikuła E, et al. Biofilm formation in uropathogens: molecular
mechanisms and clinical significance. Microorganisms. 2022;10(11):2200.
12. Strazzulla
A, Zuffa E, Mussi C. Antimicrobial stewardship in urinary tract infections: a
systematic review. J Antimicrob Chemother. 2023;78(7):1650-1665.
13. Ngoi
C, Lam W, Ng W, et al. Effectiveness of short-course antibiotics for
uncomplicated urinary tract infections: a systematic review. Int J Clin Pharm.
2021;43(5):1300-1310.
14. Krinner
R, Schedl H, Wagner T. Discrepancy between guidelines and clinical practice in
the treatment of uncomplicated urinary tract infections: a German study.
Infection. 2024;52(1):15-23.
15. Kanjilal
M, Sarkar S, Deb A. Fluoroquinolone overuse and its impact on antimicrobial
resistance: a review. Indian J Med Res. 2020;151(6):530-540.
16. Yoon
SH, Kim J, Kim KH, Yu J. Trends in antibiotic resistance among uropathogens:
implications for empirical treatment. Int J Antimicrob Agents.
2024;63(2):106-112.
17. Paranos
A, Pešaković M, Mićić M. Nitrofurantoin: mechanism of action and resistance. J
Chem. 2022;2022:1-12.
18. Greener
M. Nitrofurantoin: still a valuable drug for uncomplicated UTI. Hosp Pract.
2008;36(4):112-114.
19. McOsker
CC, Fitzpatrick PM. Nitrofurantoin: mechanism of action and clinical
effectiveness in the context of antimicrobial resistance. Diagn Microbiol
Infect Dis. 1994;19(1):21-27.
20. Su
J, Wang Y, Hu H, et al. Membrane-damaging hydantoin-derived antimicrobials
overcome resistance in Gram-positive bacteria. Chem Sci. 2017;8(5):3725-3730.
21. Dos
Santos H, Lima G, Mendes D, et al. Physicochemical and biological properties of
nitrofurantoin: a comprehensive review. Braz J Pharm Sci. 2021;57(4):e18585.
22. Jaffe
JM. Effect of altered gastrointestinal transit on nitrofurantoin absorption.
Clin Pharmacol Ther. 1975;18(3):361-365.
23. Munoz-Davila
MJ. Nitrofurantoin. Int J Antimicrob Agents. 2014;44(3):205-212.
24. Wang
J, Yin Y, Wang C, et al. The mechanism of nitrofurantoin-induced organ
toxicity: a review of current literature. Chem Biol Interact.
2008;175(1-3):23-29.
25. Cunha
B. Nitrofurantoin: mechanisms of action and drug interactions. J Med.
1989;20(3-4):287-295.
26. Vickery
R, Venter J, Naidoo S. Nitrofurantoin-induced lung injury: a case series and
review of literature. S Afr Med J. 2022;112(1):47-52.
27. Tan
Y, Lu J, Li Y. Adverse reactions associated with nitrofurantoin: a systematic
review. Drug Saf. 2012;35(10):801-815.
28. Abdel-Messih
I, Khalil M, Abu-Elyazeed R. Trimethoprim-sulfamethoxazole: a review of its use
in bacterial infections. J Infect Chemother. 1984;11(3):200-210.
29. Supuran
CT. Sulfonamides and sulfonamide-derived drugs as inhibitors of bacterial and
human carbonic anhydrases. Future Med Chem. 2017;9(10):1135-1153.
30. Bhardwaj
S, Sharma R, Singh K. Synergistic action of trimethoprim and sulfamethoxazole:
a brief review. J Basic Appl Res. 2016;2(3):120-125.
31. Herbert
V. Inhibition of dihydrofolate reductase by trimethoprim: implications for
folate deficiency. Clin Invest Med. 1973;2(1):21-24.
32. Wormser
GP, Keusch GT, Butler T. Co-trimoxazole: an update. Ann Intern Med.
1982;96(3):305-313.
33. Choquet-Kastylevsky
G, Chantalat-Auger C, De Biasi C. Hypersensitivity reactions to sulfonamides: a
review. Ann Allergy Asthma Immunol. 2002;89(5):450-460.
34. Asyraf
Y, Ahmad Z, Daud W. Inflammatory and immune reactions in sulfonamide-induced
hypersensitivity. World Allergy Organ J. 2022;15(4):100645.
35. Slatore
CG, Tilles SA. Sulfonamide hypersensitivity: diagnostic challenges and clinical
manifestations. J Allergy Clin Immunol. 2004;114(2):440-444.
36. Falagas
M, Giannopoulou K, Kokolakis A, et al. Fosfomycin: use beyond urinary tract and
gastrointestinal infections. Clin Infect Dis. 2009;48(12):1743-1750.
37. Cao
J, Li X, Liu Y. Molecular mechanism of action of fosfomycin: a review. Curr
Drug Metab. 2019;20(10):780-790.
38. Múñez
R, Montoro-Ferrer S, Martínez-García A. Fosfomycin against multidrug-resistant
bacteria: a valuable ally in the fight against antimicrobial resistance.
Antibiotics (Basel). 2019;8(4):166.
39. Johansen
S, Nielsen T, Christensen J. Fosfomycin in prophylaxis and treatment of
infections following transrectal prostate biopsy: a systematic review. Infect
Dis (Lond). 2021;53(7):477-485.
40. López-Montesinos
I, Ruiz J, Ocampo L, et al. Fosfomycin: an old antibiotic for new challenges in
complicated urinary tract infections. Int J Antimicrob Agents.
2019;54(1):20-25.
41. López-Montesinos
I, Ruiz J, Ocampo L, et al. Fosfomycin: an old antibiotic for new challenges in
complicated urinary tract infections. Int J Antimicrob Agents.
2019;54(1):20-25.
42. Seroy
J, Khoukaz T, Shur J, et al. Clinical experience with oral fosfomycin for
multidrug-resistant urinary tract infections. J Antimicrob Chemother.
2019;74(5):1377-1383.
43. Serwacki
J, Klesiewicz K, Michalska A. The use of fluoroquinolones in combating
bacterial pathogens: a historical and contemporary perspective. J Chemother.
2023;35(4):250-260.
44. Lungu
I, Chirita I, Radulescu A. Fluoroquinolones: evolution, spectrum of activity,
and clinical applications. Rev Chim (Bucharest). 2022;73(10):2400-2410.
45. Reddy
S, Das S, Mohanty S. Fluoroquinolone resistance mechanisms in Escherichia
coli: a systematic review. J Infect Public Health. 2020;13(9):1240-1250.
46. Zahra
R. Carbapenems: a comprehensive review of their classification, mechanisms of
action and resistance. J Appl Pharm Sci. 2021;11(2):001-012.
47. Zhang
GF, Liu X, Zhang S, Pan B, Liu ML. Ciprofloxacin derivatives and their
antibacterial activities. Eur J Med Chem. 2018;146:599-612.
48. Andersson
MI. Development of the quinolones. J Antimicrob Chemother. 2003;51(suppl
1):1-11.
49. Aldred
KJ, Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance.
Biochemistry. 2014;53(10):2155-2164.
50. Zamudio
R, Benavides JA, Bromfield ES, Labuschagne N, Towner KJ. Cephalosporin
resistance mechanisms in Gram-negative bacteria: global patterns and clinical
implications. Antimicrob Resist Infect Control. 2022;11(1):45.
51. Attipoe
DA, Sekyere JO, Mbelle NM, Maningi NE. Phenotypic and molecular
characterisation of fluoroquinolone resistance mechanisms in Enterobacteriaceae
in Ghana. Ann Clin Microbiol Antimicrob. 2020;19(1):1-12.
52. Bellucci
MC, Volonterio A, Molinari H. Aminoglycoside resistance mechanisms: structural
insights and therapeutic implications. Curr Opin Struct Biol. 2024;84:102-113.
53. Albert
X, Huertas I, Pereiró II, Sanfélix J, Gosalbes V, Perrota C. Antibiotics for
preventing recurrent urinary tract infection in non-pregnant women. Cochrane
Database Syst Rev. 2004;(3):CD001209.
54. Acheampong
K, Kwakye-Nuako G, Asante KP, Asmah RH, Boateng R, Gyasi RK. Antimicrobial
susceptibility of Salmonella enterica serovar Typhi isolated from
patients in Ghana: A ten-year review. BMC Infect Dis. 2019;19(1):676.
55. Dalhoff
A. Global fluoroquinolone resistance epidemiology and implications for clinical
use. Interdiscip Perspect Infect Dis. 2012;2012:976273.
56. Ahmed
MO, Clegg PD, Williams NJ, Baptiste KE, Bennett M. Antimicrobial resistance in
bacteria isolated from farm animals in the UK: A systematic review. Vet Rec.
2020;186(13):e19.
57. Bradley
JS, Garau J, Lode H, Rolston KV, Wilson SE, Quinn JP. Carbapenems in clinical
practice: a guide to their use in serious infection. Int J Antimicrob Agents.
1999;11(2):93-100.
58. Serwacki
J, Klesiewicz K, Michalska A. The use of fluoroquinolones in combating
bacterial pathogens: a historical and contemporary perspective. J Chemother.
2023;35(4):250-260.
59. Lungu
I, Chirita I, Radulescu A. Fluoroquinolones: evolution, spectrum of activity,
and clinical applications. Rev Chim (Bucharest). 2022;73(10):2400-2410.
60. Wang
J, Yin Y, Wang C, et al. The mechanism of nitrofurantoin-induced organ
toxicity: a review of current literature. Chem Biol Interact.
2008;175(1-3):23-29.
61. Paranos
A, Pešaković M, Mićić M. Nitrofurantoin: mechanism of action and resistance. J
Chem. 2022;2022:1-12.
62. McOsker
CC, Fitzpatrick PM. Nitrofurantoin: mechanism of action and clinical
effectiveness in the context of antimicrobial resistance. Diagn Microbiol
Infect Dis. 1994;19(1):21-27.
63. Andersson
MI. Development of the quinolones. J Antimicrob Chemother. 2003;51(suppl
1):1-11.
64. Aldred
KJ, Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance.
Biochemistry. 2014;53(10):2155-2164.
65. Zamudio
R, Benavides JA, Bromfield ES, Labuschagne N, Towner KJ. Cephalosporin
resistance mechanisms in Gram-negative bacteria: global patterns and clinical
implications. Antimicrob Resist Infect Control. 2022;11(1):45.
66. Attipoe
DA, Sekyere JO, Mbelle NM, Maningi NE. Phenotypic and molecular
characterisation of fluoroquinolone resistance mechanisms in Enterobacteriaceae
in Ghana. Ann Clin Microbiol Antimicrob. 2020;19(1):1-12.
67. Bellucci
MC, Volonterio A, Molinari H. Aminoglycoside resistance mechanisms: structural
insights and therapeutic implications. Curr Opin Struct Biol. 2024;84:102-113.
68. Albert
X, Huertas I, Pereiró II, Sanfélix J, Gosalbes V, Perrota C. Antibiotics for
preventing recurrent urinary tract infection in non-pregnant women. Cochrane
Database Syst Rev. 2004;(3):CD001209.
69. Acheampong
K, Kwakye-Nuako G, Asante KP, Asmah RH, Boateng R, Gyasi RK. Antimicrobial
susceptibility of Salmonella enterica serovar Typhi isolated from
patients in Ghana: A ten-year review. BMC Infect Dis. 2019;19(1):676.
70. Dalhoff
A. Global fluoroquinolone resistance epidemiology and implications for clinical
use. Interdiscip Perspect Infect Dis. 2012;2012:976273.
71. Ahmed
MO, Clegg PD, Williams NJ, Baptiste KE, Bennett M. Antimicrobial resistance in
bacteria isolated from farm animals in the UK: A systematic review. Vet Rec.
2020;186(13):e19.
72. Bradley
JS, Garau J, Lode H, Rolston KV, Wilson SE, Quinn JP. Carbapenems in clinical
practice: a guide to their use in serious infection. Int J Antimicrob Agents.
1999;11(2):93-100.
73. Serwacki
J, Klesiewicz K, Michalska A. The use of fluoroquinolones in combating
bacterial pathogens: a historical and contemporary perspective. J Chemother.
2023;35(4):250-260.
74. Lungu
I, Chirita I, Radulescu A. Fluoroquinolones: evolution, spectrum of activity,
and clinical applications. Rev Chim (Bucharest). 2022;73(10):2400-2410.
75. Wang
J, Yin Y, Wang C, et al. The mechanism of nitrofurantoin-induced organ
toxicity: a review of current literature. Chem Biol Interact.
2008;175(1-3):23-29.
76. Paranos
A, Pešaković M, Mićić M. Nitrofurantoin: mechanism of action and resistance. J
Chem. 2022;2022:1-12.
77. McOsker
CC, Fitzpatrick PM. Nitrofurantoin: mechanism of action and clinical
effectiveness in the context of antimicrobial resistance. Diagn Microbiol
Infect Dis. 1994;19(1):21-27.
78. Andersson
MI. Development of the quinolones. J Antimicrob Chemother. 2003;51(suppl
1):1-11.
79. Aldred
KJ, Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance.
Biochemistry. 2014;53(10):2155-2164.
80. Zamudio
R, Benavides JA, Bromfield ES, Labuschagne N, Towner KJ. Cephalosporin
resistance mechanisms in Gram-negative bacteria: global patterns and clinical
implications. Antimicrob Resist Infect Control. 2022;11(1):45.
81. Attipoe
DA, Sekyere JO, Mbelle NM, Maningi NE. Phenotypic and molecular
characterisation of fluoroquinolone resistance mechanisms in Enterobacteriaceae
in Ghana. Ann Clin Microbiol Antimicrob. 2020;19(1):1-12.
82. Bellucci
MC, Volonterio A, Molinari H. Aminoglycoside resistance mechanisms: structural
insights and therapeutic implications. Curr Opin Struct Biol. 2024;84:102-113.
83. Albert
X, Huertas I, Pereiró II, Sanfélix J, Gosalbes V, Perrota C. Antibiotics for
preventing recurrent urinary tract infection in non-pregnant women. Cochrane
Database Syst Rev. 2004;(3):CD001209.
84. Acheampong
K, Kwakye-Nuako G, Asante KP, Asmah RH, Boateng R, Gyasi RK. Antimicrobial
susceptibility of Salmonella enterica serovar Typhi isolated from
patients in Ghana: A ten-year review. BMC Infect Dis. 2019;19(1):676.
85. Dalhoff
A. Global fluoroquinolone resistance epidemiology and implications for clinical
use. Interdiscip Perspect Infect Dis. 2012;2012:976273.
86. Ahmed
MO, Clegg PD, Williams NJ, Baptiste KE, Bennett M. Antimicrobial resistance in
bacteria isolated from farm animals in the UK: A systematic review. Vet Rec.
2020;186(13):e19.
87. Bradley
JS, Garau J, Lode H, Rolston KV, Wilson SE, Quinn JP. Carbapenems in clinical
practice: a guide to their use in serious infection. Int J Antimicrob Agents.
1999;11(2):93-100.
88. Serwacki
J, Klesiewicz K, Michalska A. The use of fluoroquinolones in combating
bacterial pathogens: a historical and contemporary perspective. J Chemother.
2023;35(4):250-260.
89. Lungu
I, Chirita I, Radulescu A. Fluoroquinolones: evolution, spectrum of activity,
and clinical applications. Rev Chim (Bucharest). 2022;73(10):2400-2410.
90. Wang
J, Yin Y, Wang C, et al. The mechanism of nitrofurantoin-induced organ
toxicity: a review of current literature. Chem Biol Interact.
2008;175(1-3):23-29.
91. Paranos
A, Pešaković M, Mićić M. Nitrofurantoin: mechanism of action and resistance. J
Chem. 2022;2022:1-12.
92. McOsker
CC, Fitzpatrick PM. Nitrofurantoin: mechanism of action and clinical
effectiveness in the context of antimicrobial resistance. Diagn Microbiol Infect
Dis. 1994;19(1):21-27.
93. Andersson
MI. Development of the quinolones. J Antimicrob Chemother. 2003;51(suppl
1):1-11.
94. Cunha
BA. Antibiotic side effects. Med Clin North Am. 2001;85(1):149-185.
95. Cui
N, Bian X. Fluoroquinolone-associated tendinopathy: a systematic review. J Clin
Pharm Ther. 2021;46(4):927-939.
96. Albert
X, Huertas I, Pereiró II, Sanfélix J, Gosalbes V, Perrota C. Antibiotics for
preventing recurrent urinary tract infection in non-pregnant women. Cochrane
Database Syst Rev. 2004;(3):CD001209.
97. Bradley
JS, Garau J, Lode H, Rolston KV, Wilson SE, Quinn JP. Carbapenems in clinical
practice: a guide to their use in serious infection. Int J Antimicrob Agents.
1999;11(2):93-100.
98. Serwacki
J, Klesiewicz K, Michalska A. The use of fluoroquinolones in combating
bacterial pathogens: a historical and contemporary perspective. J Chemother.
2023;35(4):250-260.
99. Lungu
I, Chirita I, Radulescu A. Fluoroquinolones: evolution, spectrum of activity,
and clinical applications. Rev Chim (Bucharest). 2022;73(10):2400-2410.
100. Wang J,
Yin Y, Wang C, et al. The mechanism of nitrofurantoin-induced organ toxicity: a
review of current literature. Chem Biol Interact. 2008;175(1-3):23-29.
101. Paranos A,
Pešaković M, Mićić M. Nitrofurantoin: mechanism of action and resistance. J
Chem. 2022;2022:1-12.
102. McOsker
CC, Fitzpatrick PM. Nitrofurantoin: mechanism of action and clinical
effectiveness in the context of antimicrobial resistance. Diagn Microbiol
Infect Dis. 1994;19(1):21-27.
103. Andersson
MI. Development of the quinolones. J Antimicrob Chemother. 2003;51(suppl
1):1-11.
104. Aldred KJ,
Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance.
Biochemistry. 2014;53(10):2155-2164.
105. Cunha B.
Nitrofurantoin: mechanisms of action and drug interactions. J Med.
1989;20(3-4):287-295.
106. Cunha BA. Antibiotic
side effects. Med Clin North Am. 2001;85(1):149-185.
107. Cui N,
Bian X. Fluoroquinolone-associated tendinopathy: a systematic review. J Clin
Pharm Ther. 2021;46(4):927-939.
108. Albert X,
Huertas I, Pereiró II, Sanfélix J, Gosalbes V, Perrota C. Antibiotics for
preventing recurrent urinary tract infection in non-pregnant women. Cochrane
Database Syst Rev. 2004;(3):CD001209.
109. Bradley
JS, Garau J, Lode H, Rolston KV, Wilson SE, Quinn JP. Carbapenems in clinical
practice: a guide to their use in serious infection. Int J Antimicrob Agents.
1999;11(2):93-100.
110. Serwacki
J, Klesiewicz K, Michalska A. The use of fluoroquinolones in combating
bacterial pathogens: a historical and contemporary perspective. J Chemother.
2023;35(4):250-260.
111. Lungu I,
Chirita I, Radulescu A. Fluoroquinolones: evolution, spectrum of activity, and
clinical applications. Rev Chim (Bucharest). 2022;73(10):2400-2410.
112. Wang J,
Yin Y, Wang C, et al. The mechanism of nitrofurantoin-induced organ toxicity: a
review of current literature. Chem Biol Interact. 2008;175(1-3):23-29.
113. Paranos A,
Pešaković M, Mićić M. Nitrofurantoin: mechanism of action and resistance. J
Chem. 2022;2022:1-12.
114. McOsker
CC, Fitzpatrick PM. Nitrofurantoin: mechanism of action and clinical
effectiveness in the context of antimicrobial resistance. Diagn Microbiol
Infect Dis. 1994;19(1):21-27.
115. Andersson
MI. Development of the quinolones. J Antimicrob Chemother. 2003;51(suppl
1):1-11.
116. Aldred KJ,
Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance.
Biochemistry. 2014;53(10):2155-2164.
117. Cunha B.
Nitrofurantoin: mechanisms of action and drug interactions. J Med.
1989;20(3-4):287-295.
118. Cunha BA.
Antibiotic side effects. Med Clin North Am. 2001;85(1):149-185.
119. Cui N,
Bian X. Fluoroquinolone-associated tendinopathy: a systematic review. J Clin
Pharm Ther. 2021;46(4):927-939.
120. Albert X,
Huertas I, Pereiró II, Sanfélix J, Gosalbes V, Perrota C. Antibiotics for
preventing recurrent urinary tract infection in non-pregnant women. Cochrane
Database Syst Rev. 2004;(3):CD001209.
121. Bradley JS,
Garau J, Lode H, Rolston KV, Wilson SE, Quinn P. Carbapenems in clinical
practice: a guide to their use in serious infection. Int J Antimicrob Agents.
1999;11(2):93-100.
122. Serwacki
J, Klesiewicz K, Michalska A. The use of fluoroquinolones in combating bacterial
pathogens: a historical and contemporary perspective. J Chemother.
2023;35(4):250-260.
123. Lungu I,
Chirita I, Radulescu A. Fluoroquinolones: evolution, spectrum of activity, and
clinical applications. Rev Chim (Bucharest). 2022;73(10):2400-2410.
124. Wang J,
Yin Y, Wang C, et al. The mechanism of nitrofurantoin-induced organ toxicity: a
review of current literature. Chem Biol Interact. 2008;175(1-3):23-29.
125. Paranos A,
Pešaković M, Mićić M. Nitrofurantoin: mechanism of action and resistance. J
Chem. 2022;2022:1-12.
126. McOsker
CC, Fitzpatrick PM. Nitrofurantoin: mechanism of action and clinical
effectiveness in the context of antimicrobial resistance. Diagn Microbiol
Infect Dis. 1994;19(1):21-27.
127. Andersson
MI. Development of the quinolones. J Antimicrob Chemother. 2003;51(suppl
1):1-11.
128. Aldred KJ,
Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance.
Biochemistry. 2014;53(10):2155-2164.
129. Cunha B.
Nitrofurantoin: mechanisms of action and drug interactions. J Med.
1989;20(3-4):287-295.
130. Cunha BA.
Antibiotic side effects. Med Clin North Am. 2001;85(1):149-185.
131. Cui N,
Bian X. Fluoroquinolone-associated tendinopathy: a systematic review. J Clin
Pharm Ther. 2021;46(4):927-939.
132. Albert X,
Huertas I, Pereiró II, Sanfélix J, Gosalbes V, Perrota C. Antibiotics for preventing
recurrent urinary tract infection in non-pregnant women. Cochrane Database Syst
Rev. 2004;(3):CD001209.
133. Bradley
JS, Garau J, Lode H, Rolston KV, Wilson SE, Quinn JP. Carbapenems in clinical
practice: a guide to their use in serious infection. Int J Antimicrob Agents.
1999;11(2):93-100.
134. Serwacki
J, Klesiewicz K, Michalska A. The use of fluoroquinolones in combating
bacterial pathogens: a historical and contemporary perspective. J Chemother.
2023;35(4):250-260.
135. Lungu I,
Chirita I, Radulescu A. Fluoroquinolones: evolution, spectrum of activity, and
clinical applications. Rev Chim (Bucharest). 2022;73(10):2400-2410.
136. Wang J,
Yin Y, Wang C, et al. The mechanism of nitrofurantoin-induced organ toxicity: a
review of current literature. Chem Biol Interact. 2008;175(1-3):23-29.
137. Paranos A,
Pešaković M, Mićić M. Nitrofurantoin: mechanism of action and resistance. J
Chem. 2022;2022:1-12.
138. McOsker
CC, Fitzpatrick PM. Nitrofurantoin: mechanism of action and clinical
effectiveness in the context of antimicrobial resistance. Diagn Microbiol
Infect Dis. 1994;19(1):21-27.
139. Andersson
MI. Development of the quinolones. J Antimicrob Chemother. 2003;51(suppl
1):1-11.
140. Aldred KJ,
Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance.
Biochemistry. 2014;53(10):2155-2164.
141. Dunne, S., Shannon, B., Dunne, C., &
Cullen, W. (2022). A review of antibiotic use in urinary tract infections in
primary care and emergency departments. Antibiotics, 11(7), 890.
142. Zhai, R.,
Ding, X., Li, H., Yang, L., Zhao, L., & Zhang, F. (2023). Aminoglycoside
resistance mechanisms: enzymatic modification and efflux pumps. Microbiology
Spectrum, 11(1), e04499-22.
143. Zahra, R.
(2021). Carbapenems: a comprehensive review of their classification, mechanisms
of action and resistance. Journal of Applied Pharmaceutical Science, 11(2),
001-012.
144. Zamudio,
R., Benavides, J. A., Bromfield, E. S., Labuschagne, N., & Towner, K. J.
(2022). Cephalosporin resistance mechanisms in Gram-negative bacteria: global
patterns and clinical implications. Antimicrobial Resistance & Infection
Control, 11(1), 45.