Abstract View

Author(s): Edarada Kavya Anisha1, Gangapatrula Hema Sudha2, Dongala Kanakamahalakshmi3, Pasumarthi Phaneendra4

Email(s): 1anishaedarada.11@gmail.com

Address:

    Vikas Institute of Pharmaceutical sciences, Rajahmundry.

Published In:   Volume - 4,      Issue - 4,     Year - 2025

DOI: https://doi.org/10.71431/IJRPAS.2025.4402  

 View HTML        View PDF

Please allow Pop-Up for this website to view PDF file.

ABSTRACT:
Anthelmintics are drugs used to treat parasitic worm-related illnesses, particularly in tropical and subtropical regions. These drugs target parasites' physiological functions, such as damage to their protective cuticle, metabolic suppression, and nervous system interaction. In vitro and in vivo testing is possible, often using worm or other parasitic animal models. Understanding the effectiveness, tolerability, and resistance patterns of medications is crucial for future therapeutic approaches and reducing helminthic infections worldwide, as traditional medications face increasing resistance, necessitating the development of novel anthelmintics. Plant extracts have drawn attention as a substitute source of anthelmintic compounds because of their affordable, natural, and less harmful qualities. By blocking parasite physiological functions and causing structural damage to helminths, these bioactive substances—which include alkaloids, flavonoids, terpenoids, and saponins—have demonstrated encouraging anthelmintic potential. Studies conducted both in vitro and in vivo have demonstrated the efficacy of plant extracts against a variety of parasitic worms, such as nematodes, cestodes, and trematodes. Plant extracts, rich in natural, inexpensive, and less toxic compounds like alkaloids, flavonoids, terpenoids, and saponins, are increasingly recognized as an alternative source of anthelmintic chemicals due to their promising activity against various parasitic worms in both in vitro and in vivo studies. Plant extracts have shown effectiveness against parasitic worms, including nematodes, cestodes, and trematodes, due to their bioactive chemicals. However, toxicity, standardization, and clinical studies remain issues. This review explores the anthelmintic properties of plant extracts, their modes of action, and potential as eco-friendly alternatives to synthetic anthelmintics. Further research could lead to new treatments.

Cite this article:
Edarada Kavya Anisha, Gangapatrula Hema Sudha, Dongala Kanakamahalakshmi, Pasumarthi Phaneendra. A Comprehensive review on Anthelminthics. JRPAS, April 2025; 4 (4): 12-28.DOI: https://doi.org/https://doi.org/10.71431/IJRPAS.2025.4402


1.      Dereje Tulu Robi, Tesfa Mossie & Shiferaw Temteme. (2023) Eukaryotic Infections in Dairy Calves: Impacts, Diagnosis, and Strategies for Prevention and ControlVeterinary Medicine: Research and Reports 14, pages 195-208.

2.      Delfin E. Cabardo Jr., Harvie P. Portugaliza. (2017) Anthelmintic activity of Moringa oleifera seed aqueous and ethanolic extracts against Haemonchus contortus eggs and third stage larvae. International Journal of Veterinary Science and Medicine, Pages 30-34, doi.org/10.1016/j.ijvsm.2017.02.001

3.      Mbuh, J. V., & Nembu, N. E. (2012). Malnutrition and intestinal helminth infections in schoolchildren from Dibanda, Cameroon. Journal of Helminthology, 87(01), 46–51. doi:10.1017/s0022149x12000016

4.      Feyisa Kuma, Tadesse Birhanu* and Eyob Hirpa. (2015) Advanced Review on Anthelmintic Medicinal Plants. School of Veterinary Medicine, College of Medical and Health Sciences, Wollega University, P.O. Box 395, Nekemte, Ethiopia.

5.      Imhoff-Kunsch, B., & Briggs, V. (2012). Antihelminthics in Pregnancy and Maternal, Newborn and Child Health. Paediatric and Perinatal Epidemiology, 26, 223–238. doi:10.1111/j.1365-3016.2012.01280.x 

6.      Romero-Benavides, J. C., Ruano, A. L., Silva-Rivas, R., Castillo-Veintimilla, P., Vivanco-Jaramillo, S., & Bailon-Moscoso, N. (2017). Medicinal plants used as anthelmintics: Ethnomedical, pharmacological, and phytochemical studies. European Journal of Medicinal Chemistry, 129, 209–217. doi:10.1016/j.ejmech.2017.02.005 

7.      Abongwa, M., Martin, R. J., & Robertson, A. P. (2017). A brief review on the mode of action of antinematodal drugs. Acta Veterinaria, 67(2), 137–152. doi:10.1515/acve-2017-0013 

8.      Lindy Holden-Dye and Robert J. Walker. (June 25, 2005), WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.7.1, http://www.wormbook.org.

9.      PIYUSH YADAV*, RUPALI SINGH. (2011), A Review on Anthelmintic drugs and their future scope, International Journal of Pharmacy and Pharmaceutical Sciences, Vol 3.

10.  Bossche, H. V. (1985). Pharmacology of Anthelmintics. Handbook of Experimental Pharmacology, 125–181. doi:10.1007/978-3-642-69527-8_4

11.  Sheth, U. K. (1975). Mechanisms of Anthelmintic Action. Progress in Drug Research / Fortschritte Der Arzneimittelforschung / Progrès Des Recherches Pharmaceutiques, 147–157. doi:10.1007/978-3-0348-7090-0_19  

12.  REW, R. S. (1978). Mode of action of common anthelmintics. Journal of Veterinary Pharmacology and Therapeutics, 1(3), 183–197. doi:10.1111/j.1365-2885.1978.tb00326.x

13.  Liu, M., Panda, S. K., & Luyten, W. (2020). Plant-Based Natural Products for the Discovery and Development of Novel Anthelmintics against Nematodes. Biomolecules10(3), 426. https://doi.org/10.3390/biom10030426

14.  Jayawardene, K. L. T. D., Palombo, E. A., & Boag, P. R. (2021). Natural Products Are a Promising Source for Anthelmintic Drug Discovery. Biomolecules11(10), 1457. https://doi.org/10.3390/biom11101457

15.  Ahmed, H., Kilinc, S. G., Celik, F., Kesik, H. K., Simsek, S., Ahmad, K. S., Afzal, M. S., Farrakh, S., Safdar, W., Pervaiz, F., Liaqat, S., Zhang, J., & Cao, J. (2023). An Inventory of Anthelmintic Plants across the Globe. Pathogens12(1), 131. https://doi.org/10.3390/pathogens12010131

16.  Samantha A. Nixon, Claudia Welz , Debra J. Woods , Livio Costa-Junior , Mostafa Zamanian , Richard J. Martin. (2020), Where are all the anthelmintics? Challenges and opportunities on the path to new anthelmintics. International Journal for Parasitology: Drugs and Drug Resistance. Volume 14, Pages 8-16, https://doi.org/10.1016/j.ijpddr.2020.07.001

17.  V. Tandon, A. K. Yadav, B. Roy and B. Das. (2011), Phytochemicals as cure of worm infections in traditional medicine systems, Emerging Trends in Zoology, Pages 351–378

18.  Adak, M., & Kumar, P. (2022). Herbal anthelmintic agents: a narrative review. Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan42(4), 641–651. https://doi.org/10.19852/j.cnki.jtcm.2022.04.007

19.  Hassen Shamil MumedDereje Regassa NigussieKedir Sali MusaAbdallahi Abdurahman Demissie. (2022), In Vitro Anthelmintic Activity and Phytochemical Screening of Crude Extracts of Three Medicinal Plants against Haemonchus Contortus in Sheep at Haramaya Municipal Abattoir, Eastern Hararghe, journal of parasitology research, https://doi.org/10.1155/2022/6331740

20.   Ahmad S, Humak F, Ahmad M, Altaf H, Qamar W, Hussain A, Ashraf U, Abbas RZ, Siddique A, Ashraf T and Mughal MAS, 2023. Phytochemicals as alternative anthelmintics against poultry parasites: A review. Agrobiological Records 12: 34-45. https://doi.org/10.47278/journal.abr/2023.015

21.  Fissiha, W., & Kinde, M. Z. (2021). Anthelmintic Resistance and Its Mechanism: A Review. Infection and Drug Resistance14, 5403–5410. https://doi.org/10.2147/IDR.S332378

22.  Kamaraj, C., & Rahuman, A. A. (2011). Efficacy of anthelmintic properties of medicinal plant extracts against Haemonchus contortus. Research in Veterinary Science, 91(3), 400–404. doi:10.1016/j.rvsc.2010.09.018

23.  Delfin E. Cabardo Jr., Harvie P. Portugaliza. (2017), Anthelmintic activity of Moringa oleifera seed aqueous and ethanolic extracts against Haemonchus contortus eggs and third stage larvae, International Journal of Veterinary Science and Medicine. Volume 5, Issue 1, page no 30-34, https://doi.org/10.1016/j.ijvsm.2017.02.001

24.  Taylor, M. A., Hunt, K. R., & Goodyear, K. L. (2002). Anthelmintic resistance detection methods. Veterinary Parasitology, 103(3), 183–194. doi:10.1016/s0304-4017(01)00604-5

25.  María Victoria Miró a, Carolina Rocha e Silva c, Paula Viviani a, Sonia Luque b, Mercedes Lloberas b, Livio Martins Costa-Júnior c, Carlos Lanusse a, Guillermo Virkel a, Adrián Lifschitz. (2020), Combination of bioactive phytochemicals and synthetic anthelmintics: In vivo and in vitro assessment of the albendazole-thymol association, Veterinary Parasitology. Volume 281, https://doi.org/10.1016/j.vetpar.2020.109121

26.  Jayawardene, K. L. T. D., Palombo, E. A., & Boag, P. R. (2021). Natural Products Are a Promising Source for Anthelmintic Drug Discovery. Biomolecules11(10), 1457. https://doi.org/10.3390/biom11101457

27.  Liu, M., Panda, S. K., & Luyten, W. (2020). Plant-Based Natural Products for the Discovery and Development of Novel Anthelmintics against Nematodes. Biomolecules10(3), 426. https://doi.org/10.3390/biom10030426

 

Related Images:



Recent Images



A Review on Diabetes Mellitus: Type1 & Type2
Formulation and Evaluation of Herbal Hair Mask
FT-IR and UV-Vis Spectroscopic studies of Cd(II), Hg(II) and Zn(II)  metal complexes of 2-methoxy-2
FT-IR and UV-Vis Spectroscopic studies of Co(II), Cu(II) and Mn(II) metal complexes of 2-methoxy-2
Simultaneous UV Spectrophotometric Analysis of Paracetamol and Ibuprofen in an Ethanol–NaoH Solvent System
A Review on Antiseptic Gargle
Formulation and Characterisation of Papaya Leaf Gel
Formulation and Characterisation of Herbal Neem Soap
Formulation and Evaluation of Herbal Hair Serum
Pharmaceutical Marketing Role to Adapt Drug Promotional Practices at the duration times  of Pandemic Covid-19

Tags


Recomonded Articles:

Author(s): Khatik Avej; Khanushiya Maaz; Khan Adil; Khairdi Mohd. Ubaid

DOI:         Access: Open Access Read More

Author(s): Dr. Shaikh Muzaffar Ahmed1;* Dr. Gufran Ahmad Qamruddin2; Dr. Sumaira Abdul Salam3;

DOI:         Access: Open Access Read More

Author(s): Dr. Rahane Rahulkumar; Pawar Pravinkumar; Nagare Siddhant*; More Karishma ; Prof. Kadam Vaibhav; Musale Yogesh.

DOI: https://doi.org/10.71431/IJRPAS.2025.4315         Access: Open Access Read More

Author(s): Ankitha .V1;Narendra Reddy. A1; Yalmaji .21Madhu Harika. B1*

DOI: https://doi.org/10.71431/IJRPAS.2025.4206         Access: Open Access Read More

Author(s): R.. Sundhararajan; M. J. Parimala*; S. U. Abdul Rafeeq; N. Ahamed Mushin; M. R. Ahmed Maaiz; K. Ajith Kumar; R. Praveen Kumar

DOI: https://doi.org/10.71431/IJRPAS.2025.4303         Access: Open Access Read More

Author(s): Dr. Rahulkumar D. Rahane; Karishma K. More*; Shrihari D. Shinde; Prof. Vaibhav N. Kadam; Siddhant S. Nagare; Pravinkumar M. Pawar

DOI: https://doi.org/10.71431/IJRPAS.2025.4304         Access: Open Access Read More

Author(s): Araman Alam; Roshan Kumar; Avantika kumari; Bharti sahu

DOI: https://doi.org/10.71431/IJRPAS.2025.4401         Access: Open Access Read More

Author(s): Edarada Kavya Anisha; Gangapatrula Hema Sudha; Dongala Kanakamahalakshmi; Pasumarthi Phaneendra

DOI: https://doi.org/10.71431/IJRPAS.2025.4402         Access: Open Access Read More