Abstract View

Author(s): Harshal G. Patil*1, Vinit S. Khairnar2

Email(s): 1harshpatil6006@gmail.com

Address:

    Ahinsa Institute of Pharmacy, Dhule road, Dondaicha, Tal. Shindkheda, Dist. Dhule, Maharashtra

Published In:   Volume - 4,      Issue - 5,     Year - 2025

DOI: https://doi.org/10.71431/IJRPAS.2025.4503  

 View HTML        View PDF

Please allow Pop-Up for this website to view PDF file.

ABSTRACT:
Artificial Intelligence plays a transformative role in Pharmacovigilance emphasizing its huge impact on detection of adverse drug reactions rather effectively. Various studies were analysed thoroughly identifying key AI applications such as Natural language processing and Machine learning alongside predictive modelling techniques very effectively. It highlights significant challenges such as complex data quality issues and gaps in regulatory frameworks alongside significant infrastructure shortcomings and big limitations. AI's transformative potential in Pharmacovigilance remains evident despite existing challenges and future tech policy collaboration will further bolster drug safety greatly.

Cite this article:
Harshal G. Patil, Vinit S. Khairnar. Impact of AI on Pharmacovigilance: A Systematic Review. IJRPAS, May 2025; 4 (5): 26-35.DOI: https://doi.org/https://doi.org/10.71431/IJRPAS.2025.4503


1)      Fu, L., Jia, G., Liu, Z., Pang, X., & Cui, Y. (2025). The applications and advances of artificial intelligence in drug regulation: A global perspective. Acta Pharmaceutica Sinica B, 15(1), 1–14. https://doi.org/10.1016/j.apsb.2024.11.006

2)      Bekbolatova, M., Mayer, J., Ong, C. W., & Toma, M. (2024). Transformative potential of AI in healthcare: Definitions, applications, and navigating the ethical landscape and public perspectives. Healthcare, 12(2), 125. https://doi.org/10.3390/healthcare12020125

3)      World Health Organization. Pharmacovigilance [Internet]. Geneva: WHO; 2024  https://www.who.int/teams/regulation-prequalification/pharmacovigilance

4)      U.S. Food and Drug Administration. FDA Adverse Event Reporting System (FAERS) [Internet]. Silver Spring (MD): FDA; 2024 Dec 5  https://www.fda.gov/drugs/surveillance/fdas-adverse-event-reporting-system-faers

5)      Ahire YS, Patil JH, Chordiya HN, Deore RA, Bairagi VA. Advanced applications of artificial intelligence in pharmacovigilance: Current trends and future perspectives. J Pharm Res. 2024;23(1):23–33.  https://jopcr.com/articles/advanced-applications-of-artificial-intelligence-in-pharmacovigilance-current-trends-and-future-perspectives

6)      Al-Garadi MA, Yang YC, Sarker A. The Role of Natural Language Processing during the COVID-19 Pandemic: Health Applications, Opportunities, and Challenges. Healthcare (Basel). 2022 Nov 12;10(11):2270. doi: 10.3390/healthcare10112270. PMID: 36421593; PMCID: PMC9690240.

7)      Madan, S., Lentzen, M., Brandt, J. et al. Transformer models in biomedicine. BMC Med Inform Decis Mak 24, 214 (2024). https://doi.org/10.1186/s12911-024-02600-5

8)      Fu, L., Jia, G., Liu, Z., Pang, X., & Cui, Y. (2024). The applications and advances of artificial intelligence in drug regulation: A global perspective. Acta Pharmaceutica Sinica B, 15(1), 1–14. https://doi.org/10.1016/j.apsb.2024.11.006

9)      Kawamura, K., et al. (2024). Adverse Event Signal Detection Using Patients' Concerns in Pharmaceutical Care Records: Deep Learning Model Evaluation. Journal of Medical Internet Research, 26, e55794. https://doi.org/10.2196/55794Murali K, Kaur S, Prakash A, Medhi B. Artificial intelligence in pharmacovigilance: Practical utility. Indian J Pharmacol. 2019 Nov-Dec;51(6):373-376. Doi: 10.4103/ijp.IJP_814_19. Epub 2020 Jan 16. PMID: 32029958; PMCID: PMC6984023.

10)  Rekha, B.H., Hisham, S.A., Wahab, I.A. et al. Digital monitoring of medication safety in children: an investigation of ADR signalling techniques in Malaysia. BMC Med Inform Decis Mak 24, 395 (2024). https://doi.org/10.1186/s12911-024-02801-y

11)  DIA Global Forum. (2024). A new pharmacovigilance ecosystem: Automation, AI, and continuous improvement. DIA Global Forum. https://globalforum.diaglobal.org/issue/september-2024/a-new-pharmacovigilance-ecosystem-automation-ai-and-continuous-improvement/?utm_source=chatgpt.com

12)  Springer Nature. (2025). Artificial intelligence: Applications in pharmacovigilance signal detection. Nature Reviews Drug Discovery, 24(2), 123–135. https://doi.org/10.1007/s40290-025-00561-2?utm_source=chatgpt.com

13)  IQVIA. (2024). Enhancing pharmacovigilance intake processes with AI and automation. IQVIA Blogs. https://www.iqvia.com/blogs/2024/12/enhancing-pharmacovigilance-intake-processes-with-ai-and-automation?utm_source=chatgpt.com

14)  Ferreira, R. D. A., Zhong, S., Moureaud, C., Le, M. T., Rothstein, A., Li, X., Wang, L., & Patwardhan, M. (2024). A pilot, predictive surveillance model in pharmacovigilance using machine learning approaches. Advances in Therapy, 41(6), 2435–2445. https://doi.org/10.1007/s12325-024-02870-5

15)  Painter JL, Kassekert R, Bate A. An industry perspective on the use of machine learning in drug and vaccine safety. Front Drug Saf Regul. 2023 Feb 1;3:1110498. doi: 10.3389/fdsfr.2023.1110498.

16)  Seal, S., Williams, D., Hosseini-Gerami, L., Mahale, M., Carpenter, A. E., Spjuth, O., & Bender, A. (2024). Improved Detection of Drug-Induced Liver Injury by Integrating Predicted In Vivo and In Vitro Data. Chemical Research in Toxicology, 37(8), 1290–1305. https://doi.org/10.1021/acs.chemrestox.4c00015

17)  Seal, S., Spjuth, O., Hosseini-Gerami, L., García-Ortegón, M., Singh, S., Bender, A., & Carpenter, A. E. (2024). Insights into Drug Cardiotoxicity from Biological and Chemical Data: The First Public Classifiers for FDA Drug-Induced Cardiotoxicity Rank. Journal of Chemical Information and Modeling, 64(4), 293–308. https://doi.org/10.1021/acs.jcim.3c01834

18)  Desai MK. Artificial intelligence in pharmacovigilance - Opportunities and challenges. Perspect Clin Res. 2024 Jul-Sep;15(3):116-121. doi: 10.4103/picr.picr_290_23. Epub 2024 Mar 27. PMID: 39140015; PMCID: PMC11318788.

19)  Bate, A., & Stegmann, J.-U. (2023). Artificial intelligence and pharmacovigilance: What is happening, what could happen and what should happen? Health Policy and Technology, 12(2), 100743. https://doi.org/10.1016/j.hlpt.2023.100743

20)  Liang, L., Hu, J., Sun, G., Hong, N., Wu, G., He, Y., Li, Y., Hao, T., Liu, L., & Gong, M. (2022). Artificial Intelligence-Based Pharmacovigilance in the Setting of Limited Resources. Drug Safety, 45(5), 511-519. https://doi.org/10.1007/s40264-022-01170-7

21)  Nikfarjam, A., Sarker, A., O'Connor, K., Ginn, R., & Gonzalez, G. (2015). Pharmacovigilance from social media: Mining adverse drug reaction mentions using sequence labeling with word embedding cluster features. Journal of the American Medical Informatics Association: JAMIA, 22(3), 671–681. https://doi.org/10.1093/jamia/ocu041

Related Images:



Recent Images



A Review of Current Formulation Trends and Technological Advancements
Natural solution for Alopacia: A review of Herbal Stimulants for Hair Growth and Hair Fall
Edible Insect and Their Future in India
Formulation and Evaluation of Gastroretentive Floating Microspheres of Labetalol Hydrochloride
Analysis of High Incidences and Etiological Factors of Tuberculosis in the Region of Malegaon: An Observational Study
Comprehensive Phytochemical Screening and Quantification of Bioactive Compounds in Ziziphus spina-christi for Herbal Cosmetics
Evaluation of Anti-Ulcer Activity of Chloroform and Alcoholic Extracts of Leaves of Mimusops elengi
Disease Caused by Heavy Metals and Dust: A Review
Respiratory Problems Caused Due to Heavy Metals and Dust
Neurological Complications among Pregnant and Post Partum Mothers in a Private Hospital, Yogyakarta, Indonesia

Tags