1)
Fu, L.,
Jia, G., Liu, Z., Pang, X., & Cui, Y. (2025). The applications and advances
of artificial intelligence in drug regulation: A global perspective. Acta
Pharmaceutica Sinica B, 15(1), 1–14. https://doi.org/10.1016/j.apsb.2024.11.006
2)
Bekbolatova, M., Mayer, J., Ong, C. W., & Toma, M.
(2024). Transformative potential of AI in healthcare: Definitions,
applications, and navigating the ethical landscape and public perspectives.
Healthcare, 12(2), 125. https://doi.org/10.3390/healthcare12020125
3)
World
Health Organization. Pharmacovigilance [Internet]. Geneva: WHO; 2024 https://www.who.int/teams/regulation-prequalification/pharmacovigilance
4)
U.S. Food
and Drug Administration. FDA Adverse Event Reporting System (FAERS) [Internet].
Silver Spring (MD): FDA; 2024 Dec 5 https://www.fda.gov/drugs/surveillance/fdas-adverse-event-reporting-system-faers
5)
Ahire YS,
Patil JH, Chordiya HN, Deore RA, Bairagi VA. Advanced applications of
artificial intelligence in pharmacovigilance: Current trends and future
perspectives. J Pharm Res. 2024;23(1):23–33.
https://jopcr.com/articles/advanced-applications-of-artificial-intelligence-in-pharmacovigilance-current-trends-and-future-perspectives
6)
Al-Garadi
MA, Yang YC, Sarker A. The Role of Natural Language Processing during the
COVID-19 Pandemic: Health Applications, Opportunities, and Challenges. Healthcare
(Basel). 2022 Nov 12;10(11):2270. doi: 10.3390/healthcare10112270. PMID:
36421593; PMCID: PMC9690240.
7)
Madan,
S., Lentzen, M., Brandt, J. et al. Transformer models in biomedicine. BMC Med
Inform Decis Mak 24, 214 (2024). https://doi.org/10.1186/s12911-024-02600-5
8)
Fu, L.,
Jia, G., Liu, Z., Pang, X., & Cui, Y. (2024). The applications and advances
of artificial intelligence in drug regulation: A global perspective. Acta
Pharmaceutica Sinica B, 15(1), 1–14. https://doi.org/10.1016/j.apsb.2024.11.006
9)
Kawamura,
K., et al. (2024). Adverse Event Signal Detection Using Patients' Concerns in
Pharmaceutical Care Records: Deep Learning Model Evaluation. Journal of Medical
Internet Research, 26, e55794. https://doi.org/10.2196/55794Murali K, Kaur S,
Prakash A, Medhi B. Artificial intelligence in pharmacovigilance: Practical
utility. Indian J Pharmacol. 2019 Nov-Dec;51(6):373-376. Doi: 10.4103/ijp.IJP_814_19.
Epub 2020 Jan 16. PMID: 32029958; PMCID: PMC6984023.
10) Rekha, B.H., Hisham, S.A., Wahab, I.A. et al.
Digital monitoring of medication safety in children: an investigation of ADR
signalling techniques in Malaysia. BMC Med Inform Decis Mak 24, 395 (2024). https://doi.org/10.1186/s12911-024-02801-y
11)
DIA
Global Forum. (2024). A new pharmacovigilance ecosystem: Automation, AI, and
continuous improvement. DIA Global Forum. https://globalforum.diaglobal.org/issue/september-2024/a-new-pharmacovigilance-ecosystem-automation-ai-and-continuous-improvement/?utm_source=chatgpt.com
12)
Springer
Nature. (2025). Artificial intelligence: Applications in pharmacovigilance
signal detection. Nature Reviews Drug Discovery, 24(2), 123–135. https://doi.org/10.1007/s40290-025-00561-2?utm_source=chatgpt.com
13)
IQVIA.
(2024). Enhancing pharmacovigilance intake processes with AI and automation.
IQVIA Blogs. https://www.iqvia.com/blogs/2024/12/enhancing-pharmacovigilance-intake-processes-with-ai-and-automation?utm_source=chatgpt.com
14) Ferreira, R. D. A., Zhong, S., Moureaud, C.,
Le, M. T., Rothstein, A., Li, X., Wang, L., & Patwardhan, M. (2024). A
pilot, predictive surveillance model in pharmacovigilance using machine
learning approaches. Advances in Therapy, 41(6), 2435–2445. https://doi.org/10.1007/s12325-024-02870-5
15) Painter JL, Kassekert R, Bate A. An industry
perspective on the use of machine learning in drug and vaccine safety. Front
Drug Saf Regul. 2023 Feb 1;3:1110498. doi: 10.3389/fdsfr.2023.1110498.
16) Seal, S., Williams, D., Hosseini-Gerami, L.,
Mahale, M., Carpenter, A. E., Spjuth, O., & Bender, A. (2024). Improved
Detection of Drug-Induced Liver Injury by Integrating Predicted In Vivo and In
Vitro Data. Chemical Research in Toxicology, 37(8), 1290–1305. https://doi.org/10.1021/acs.chemrestox.4c00015
17) Seal, S., Spjuth, O., Hosseini-Gerami, L.,
García-Ortegón, M., Singh, S., Bender, A., & Carpenter, A. E. (2024).
Insights into Drug Cardiotoxicity from Biological and Chemical Data: The First
Public Classifiers for FDA Drug-Induced Cardiotoxicity Rank. Journal of
Chemical Information and Modeling, 64(4), 293–308. https://doi.org/10.1021/acs.jcim.3c01834
18) Desai MK. Artificial intelligence in
pharmacovigilance - Opportunities and challenges. Perspect Clin Res. 2024
Jul-Sep;15(3):116-121. doi: 10.4103/picr.picr_290_23. Epub 2024 Mar 27. PMID:
39140015; PMCID: PMC11318788.
19) Bate, A., & Stegmann, J.-U. (2023).
Artificial intelligence and pharmacovigilance: What is happening, what could
happen and what should happen? Health Policy and Technology, 12(2), 100743. https://doi.org/10.1016/j.hlpt.2023.100743
20)
Liang,
L., Hu, J., Sun, G., Hong, N., Wu, G., He, Y., Li, Y., Hao, T., Liu, L., &
Gong, M. (2022). Artificial Intelligence-Based Pharmacovigilance in the Setting
of Limited Resources. Drug Safety, 45(5), 511-519. https://doi.org/10.1007/s40264-022-01170-7
21)
Nikfarjam,
A., Sarker, A., O'Connor, K., Ginn, R., & Gonzalez, G. (2015).
Pharmacovigilance from social media: Mining adverse drug reaction mentions
using sequence labeling with word embedding cluster features. Journal of the
American Medical Informatics Association: JAMIA, 22(3), 671–681. https://doi.org/10.1093/jamia/ocu041