Author(s):
Edwin Dias 11, 2*2, Ashvik N Kumar 33
Email(s):
1ashviknkumar@gmail.com, 2
Address:
1. Professor and HOD, Department of Paediatrics, Srinivas Institute of Medical Sciences and Research Centre, Mangalore, Karnataka, India.
2. Adjunct professor, Srinivas university, Director of research and publication, India.
3. Department of pharmacy practice, Srinivas College of Pharmacy, Valachil, Mangalore, Karnataka, India.
Published In:
Volume - 4,
Issue - 9,
Year - 2025
DOI:
https://doi.org/10.71431/IJRPAS.2025.4911
View HTML
View PDF
Please allow Pop-Up for this website to view PDF file.
ABSTRACT:
Thalassemia is a group of inherited blood disorders caused by genetic mutations that affect the synthesis of haemoglobin, leading to chronic homolytic anaemia, ineffective erythropoiesis, and systemic complications . The disease manifests primarily in two forms, alpha and beta thalassemia, with beta-thalassemia major being the most severe, often requiring lifelong management. Historically, the cornerstone of treatment has been regular blood transfusions and iron chelation therapy to manage the resultant iron overload. However, these treatments are supportive rather than curative and come with long-term complications such as organ damage and endocrine dysfunctions. In recent years, there has been significant progress in the pharmacological management of thalassemia, including the development of oral iron chelators, fetal haemoglobin inducers, and erythroid maturation agents like luspatercept. Additionally, hydroxyurea, traditionally used in sickle cell disease, has shown promise in increasing fetal haemoglobin levels in thalassemia patients. Emerging therapeutic strategies focus on correcting the underlying genetic defect through gene therapy and genome editing technologies such as lentiviral vectors and CRISPR/Cas9.
This review provides a comprehensive overview of the current drug therapies used in thalassemia, elaborating on their mechanisms of action, clinical efficacy, and limitations. It also explores emerging innovations, including gene therapy and fetal haemoglobin induction, highlighting their potential to transform the treatment landscape from chronic management to curative intent.
Cite this article:
Edwin Dias, Ashvik N Kumar. A Review of Drugs Used in Thalassemia: Current Treatments and Future Perspectives.DOI: https://doi.org/https://doi.org/10.71431/IJRPAS.2025.4911
- Cappellini MD, Piga A, Roggero S, et al. Thalassemia major: current
management and new treatment options. Blood Rev. 2019;37:100588.
- Telfer P, Coen PG, Christou S, et al. Clinical
outcomes in thalassemia: a systematic review of the literature. Br J
Haematol. 2020;190(4):e208–e217.
- Borgna-Pignatti C, Vergine G,
Lombardo T, et al. Iron overload and chelation therapy in
thalassemia. Hematol Rev. 2019;11(1):5–10.
- Piga A, Gaglioti C,
Fogliacco E, Tricta F. Deferoxamine and deferasirox in thalassemia. Transfus
Med Hemother. 2017;44(1):20–27.
- Cohen A, Glimm E, Porter J. Deferasirox in the management of iron
overload. Br J Haematol. 2018;183(3):388–400.
- Deepti R, Suri D, Das R, et al. Clinical efficacy of deferasirox in
thalassemia. J Pediatr Hematol Oncol. 2020;42(1):e22–e27.
- Kishore B, Sinha R, Sharma
S. Deferiprone: a new oral chelation therapy. Indian J Hematol Blood
Transfus. 2018;34(1):1–9.
- Aydinok Y, Bayraktaroglu S, Akar N, et al. Safety and efficacy of deferiprone in thalassemia major. Blood
Transfus. 2017;15(4):357–364.
- Williams TN, Uyoga S,
Macharia A, et al. Hydroxyurea treatment in thalassemia intermedia. JAMA
Hematol. 2019;4(4):375–383.
- Hassell KL, Hsu LL, Wonke B, et al. Hydroxyurea
use in thalassemia: a review of efficacy and safety. Am J Hematol.
2021;96(1):59–69.
- Thompson AA, Walters MC, Kwiatkowski J, et al. Luspatercept for the treatment of beta-thalassemia. N Engl J Med.
2020;382(13):1219–1231.
- Vichinsky E, Cappellini MD,
Taher A, et al. Luspatercept: a new option for thalassemia management. Hematology
Am Soc Hematol Educ Program. 2020;2020(1):59–65.
- Galanello R, Origa R,
Barella S, et al. The role of erythropoiesis-stimulating agents in
thalassemia management. Pediatr Hematol Oncol J. 2017;2(1):9–14.
- Varnado F, Horne R, Kessler C, et al. Erythropoiesis-stimulating
agents in thalassemia. Transfus Med Rev. 2018;32(3):180–186.
- Mihaila L, Dainese L,
Veronesi G, et al. LentiGlobin gene therapy for beta-thalassemia. Blood.
2019;134(Suppl_1):354.
- Frangoul H,
Altshuler D, Cappellini MD, et al. Gene therapy
for beta-thalassemia with LentiGlobin. N Engl J Med.
2020;384(4):386–398.
- Xu L, Zhao L, Gao Y, et al. CRISPR/Cas9 gene editing in thalassemia. Hum Gene Ther.
2020;31(9-10):900–911.
- Zhou H, Liu Y, Zhang F, et al. CRISPR-Cas9
and gene editing for beta-thalassemia. Curr Opin Hematol.
2021;28(2):123–130.
- Xie L, Zhang M, Chen Y, et al. BCL11A inhibition and its therapeutic potential in thalassemia. J
Clin Invest. 2021;131(8):e145289.
- Barbieri S, Fratta S, Piras E, et al. BCL11A
inhibitors and fetal hemoglobin induction. Nat Rev Hematol.
2022;19(2):91–102.
- Wang L, Zhang Y, Jin H, et al. Gene editing
in thalassemia using CRISPR-Cas9. Blood Adv. 2021;5(8):2355–2365.
- Huang H, Li J, Qiu J, et al. The future
of gene editing in thalassemia. J Hematol Oncol. 2022;15(1):31.
- Liu Y, Xu L, Shen Y, et al.
Decitabine and its potential role in thalassemia treatment. J Clin
Oncol. 2018;36(15_suppl):e19528.
- Gironella N, Ferrer A, Rives S, et al. Fetal hemoglobin inducers in
thalassemia. Exp Hematol. 2017;52:35–43.
- Cappellini MD, Musallam KM, Taher AT. Iron overload management in
thalassemia: advances and challenges. Hematol Rep. 2020;12(3):8976.
- Papanikolaou G, Tzilianos M,
Christakis JI, et al. New approaches in iron overload management. J
Hepatol. 2019;70(3):431–444.
- Kwiatkowski JL, Trachtenberg F, Roberts C, et al. Economic burden of thalassemia treatments. J Clin Pharmacol.
2020;60(9):1162–1170.
- Sanghavi P, Sheth S, Ghosh K. Challenges in accessing thalassemia
therapies in developing countries. Glob Health Action.
2021;14(1):1994746.
- Rommelaere G, Lefrère F,
Labopin M, et al. Long-term safety of gene therapy in
thalassemia. Blood Transfus. 2022;20(3):182–189.
- Akkurt MO, Yilmaz S, Cekdemir D, et al. Gene therapy
for thalassemia: a long-term follow-up study. J Clin Hematol.
2022;13(2):145–151.
31.
Ganz T, Nemeth E. Hepcidin and iron homeostasis. Biochim
Biophys Acta Mol Cell Res. 2023;1868(5):119057. doi:10.1016/j.bbamcr.2023.119057
32.
Casu C,
Nemeth E, Rivella S. Hepcidin agonists as therapeutic tools for
beta-thalassemia. Front Pharmacol. 2021;12:640309.
doi:10.3389/fphar.2021.640309
33.
Gupta S,
Rivera S, et al. Clinical development of rusfertide (PTG-300) for iron regulation.
Blood. 2022;140(Suppl 1):1231. doi:10.1182/blood-2022-152331
34.
Anzalone AV,
Koblan LW, Liu DR. Genome editing with CRISPR-derived base editors and prime
editors. Nat Biotechnol. 2020;38:824–844. doi:10.1038/s41587-020-0456-2
35.
Frangoul H, Altshuler D, Cappellini MD, et al.
CRISPR-Cas9 gene editing for sickle cell disease and beta-thalassemia. N
Engl J Med. 2021;384:252–260. doi:10.1056/NEJMoa2031054
36.
Cappellini
MD, Viprakasit V, Taher AT, et al. Luspatercept in β-thalassemia. N Engl J
Med. 2020;382:1219-1231. doi:10.1056/NEJMoa1910182