Abstract View

Author(s): Md Faiyaz11, Dr.Yogesh Chand Yadav22, Dr.Pushpendra Kumar33, Kajal varshney44, Ujjwal55, Mrs.Alisha Singh66

Email(s): 1drx.mdfaiyaz@gmail.com

Address:

    Department Of Pharmacology, Uttar Pradesh University of Medical Science, Saifai, Etawah.

Published In:   Volume - 4,      Issue - 10,     Year - 2025

DOI: DOI: https://doi.org/10.71431/IJRPAS.2025.41009  

 View HTML        View PDF

Please allow Pop-Up for this website to view PDF file.

ABSTRACT:
Natural products are a vital source of anticancer agents due to their diverse bioactive constituents. Their ability to modulate oncogenes and tumor suppressor genes through transcriptional, post-transcriptional, and epigenetic mechanisms has attracted increasing attention in cancer gene therapy research. This review summarizes recent findings on plant-derived phytochemicals and extracts that regulate key oncogenes (e.g., MYC, RAS, BCL-2, HER2) and tumor suppressors (e.g., TP53, PTEN, RB1, BRCA1). Emphasis is placed on their molecular mechanisms, preclinical and clinical evidence, and potential role as safer alternatives or adjuvants in cancer therapy. Toxicological concerns, limitations, and future directions for integrating natural products into gene-targeted therapeutics are also discussed.

Cite this article:
Md Faiyaz, Dr.Yogesh Chand Yadav, Dr.Pushpendra Kumar, Kajal varshney, Ujjwal, Mrs.Alisha Singh. Natural Products Targeting Oncogenes and Tumor Suppressor Genes: A Herbal Approach to Cancer Gene Therapy. IJRPAS, October 2025; 4(10): 125-138.DOI: https://doi.org/DOI: https://doi.org/10.71431/IJRPAS.2025.41009


1.      Yang, J., Cao, Y., Sun, J., Leng, Q., He, J., & Shen, Y. (2010). Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells. Medical Oncology, 27(4), 1114-1118.

2.      Zhao, J., Chang, S., Han, Y., & Yang, J. (2017). Curcumin suppresses the proliferation of gastric cancer cells by downregulating H19. Oncology Letters, 12(5), 3867-3874.

3.      Mukhopadhyay, A., Bueso-Ramos, C., Chatterjee, D., Pantazis, P., & Aggarwal, B. B. (2001). Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-κB and IκBα kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood, 101(3), 1053-1062.

4.      Li, L., Li, W. F., Zhang, W., Hall, T., & Zhang, X. (2015). Genistein induces apoptosis by stabilizing intracellular p53 protein through an APE1-mediated pathway. Biochemical Pharmacology, 98(3), 420-429.

5.      Yang, J., Cao, Y., Sun, J., Leng, Q., He, J., & Shen, Y. (2010). (Same as #1) — cited again in context of curcumin-Bcl-2-miR regulation. Medical Oncology, 27(4), 1114-1118.

6.      Chen, H. W., Huang, H. C., & others. (1998). Effect of curcumin on cell cycle progression and apoptosis in vascular smooth muscle cells. British Journal of Pharmacology.

7.      Li, X., Zhao, Y., & others. (2017). Curcumin causes the growth arrest and apoptosis of B cell lymphoma by downregulation of egr-1, c-myc, bcl-XL, NF-κB, and p53. Journal of Cell Biochemistry, 71(4),

8.      Chen, R., Xu, Z., Gu, J., Zhang, P., & others. (2007). Curcumin reduces mitomycin C resistance in breast cancer stem cells by regulating Bcl-2 family-mediated apoptosis. Cancer Cell International, 17, Article 28.

9.      Xiong, W., Mo, C., & others. (2007). Curcumin down-regulates Ets-1 and Bcl-2 expression in human endometrial carcinoma HEC-1-A cells. Gynecologic Oncology, 101(2), 441-448.

10.  Jing, Y., Zhou, X., Qiu, W., Wang, S., & others. (2021). Chemoprophylaxis effect of EGCG on the recurrence of colorectal cancer: a systematic review and meta-analysis. Journal of Cancer Prevention,

11.  McCubrey, J. A., Steelman, L. S., Chappell, W. H., Abrams, S. L., & others. (2017). Effects of resveratrol, curcumin, berberine, and other natural products on cancer gene therapy. Pharmacological Reports, 69(5), 887–905.

12.  Goh, Y. X., & others. (2022). Genistein: A review on its anti-inflammatory properties. Frontiers in Pharmacology, 13, 820969. https://doi.org/10.3389/fphar.2022.820969

13.  Kumar, G., & others. (2024). Transforming cancer treatment: The potential of nutraceuticals and nanocarriers. Pharmacological Research, 179, 106249. https://doi.org/10.1016/j.phrs.2022.106249

14.  Sailo, B. L., & others. (2024). Harnessing sulforaphane potential as a chemosensitizing agent in cancer therapy. Cancers, 16(2), 244. https://doi.org/10.3390/cancers16020244

15.  Debnath, I., & others. (2025). Therapeutic potential of natural compounds in targeting cancer stem cells. Current Medicinal Chemistry, 32(1), 1–20. https://doi.org/10.2174/0929867327666211217112111

16.  Li, D., & others. (2024). Advances in natural products modulating autophagy in cancer therapy. The FASEB Journal, 38(5), e14909. https://doi.org/10.1096/fj.202401409R

17.  Atuahene, D., & others. (2025). Dietary targeting of cancer pathways: Role of bioactive compounds. Current Opinion in Food Science, 45, 100825. https://doi.org/10.1016/j.cofs.2022.100825

18.  Wang, Q., & others. (2024). Dietary isothiocyanates and anticancer agents: Withaferin A and sulforaphane. Nutrients, 13(11), 3962. https://doi.org/10.3390/nu13113962

19.  Kaloni, D., & others. (2023). BCL-2 protein family: Attractive targets for cancer therapy. Cancer Medicine, 12(1), 1–13. https://doi.org/10.1002/mco2.582

20.  Fu, X., & others. (2022). BRCA1 and breast cancer: Molecular mechanisms and therapeutic strategies. Frontiers in Cell and Developmental Biology, 10, 813457. https://doi.org/10.3389/fcell.2022.813457

21.  Anwar, M. J., & others. (2023). Anti-cancer perspectives of resveratrol. Critical Reviews in Food Science and Nutrition, 63(1), 1–17. https://doi.org/10.1080/10408398.2023.2265686

22.  Royston, K. J. (2018). Combinatorial withaferin A and sulforaphane and their synergistic effects in breast cancer treatment. University of Alabama at Birmingham. https://digitalcommons.library.uab.edu/etd-collection/2869/

23.  Talib, W. H., & others. (2024). Natural products and altered metabolism in cancer. International Journal of Molecular Sciences, 25(17), 9593. https://doi.org/10.3390/ijms25179593

24.  Nan, Y., & others. (2023). The function of natural compounds in important anticancer pathways. Frontiers in Oncology, 12, 1049888. https://doi.org/10.3389/fonc.2022.1049888

 

25.  Tewari, D., & others. (2022). Targeting transforming growth factor-β signaling for cancer therapy. Clinical and Translational Medicine, 12(1), e795. https://doi.org/10.1002/ctm2.795

26.  Tewari, D., & others. (2022). Targeting transforming growth factor-β signaling for cancer therapy. Clinical and Translational Medicine, 12(1), e795. https://doi.org/10.1002/ctm2.795

27.  Ren, J., & others. (2025). Cancer chemoprevention: Signaling pathways and natural compounds. Seminars in Cancer Biology, 79, 1–12. https://doi.org/10.1016/j.semcancer.2022.11.001

28.  Li, D., & others. (2024). Natural anti-cancer products: Insights from herbal medicine. Chinese Medicine, 16(1), 1–14. https://doi.org/10.1186/s13020-025-01124-y

29.  Vogler, M., & others. (2025). The BCL2 family: From apoptosis mechanisms to new therapeutic strategies. Seminars in Cancer Biology, 80, 1–12. https://doi.org/10.1016/j.semcancer.2022.11.001

30.  Singh, S. R., & others. (2025). Exploring the genetic orchestra of cancer: The interplay between oncogenes and tumor suppressor genes. Cancers, 17(7), 1082. https://doi.org/10.3390/cancers17071082

31.  Cui, D., & others. (2025). Natural anti-cancer products: Insights from herbal medicine. Chinese Medicine, 16(1), 1–14. https://doi.org/10.1186/s13020-025-01124-y

32.  McCubrey, J. A., & others. (2017). Effects of resveratrol, curcumin, berberine, and other natural products on cancer gene therapy. Pharmacological Reports, 69(5), 887–905. https://doi.org/10.1016/j.pharep.2017.05.003

33.  Goh, Y. X., & others. (2022). Genistein: A review on its anti-inflammatory properties. Frontiers in Pharmacology, 13, 820969. https://doi.org/10.3389/fphar.2022.820969

34.  Kumar, G., & others. (2024). Transforming cancer treatment: The potential of nutraceuticals and nanocarriers. Pharmacological Research, 179, 106249. https://doi.org/10.1016/j.phrs.2022.106249

35.  Sailo, B. L., & others. (2024). Harnessing sulforaphane potential as a chemosensitizing agent in cancer therapy. Cancers, 16(2), 244. https://doi.org/10.3390/cancers16020244

36.  Wu, Y., Zhang, P., & Li, X. (2024). A specific super-enhancer actuated by berberine regulates the EGFR-mediated RAS–RAF1–MEK1/2–ERK1/2 pathway to induce autophagy in nasopharyngeal carcinoma cells. Cellular and Molecular Biology Letters, 29(1), 1–13. https://doi.org/10.1186/s11658-024-00607-4

37.  Fujiki, H., & Suganuma, M. (2018). Cancer prevention with green tea and its principal constituent, epigallocatechin gallate. Molecules, 23(1), 1–15. https://doi.org/10.3390/molecules23010096

38.  Kumar, S., & Pandey, A. K. (2023). Withaferin A: A pleiotropic anticancer agent from the Indian medicinal plant Withania somnifera. Pharmacological Research, 183, 106348. https://doi.org/10.1016/j.phrs.2022.106348

39.  Lotfi, N., & Alizadeh, J. (2023). The potential anti-cancer effects of quercetin on blood, lung, and prostate cancers. Pharmacological Reports, 75(1), 1–10. https://doi.org/10.1016/j.pharep.2022.10.004

40.  El-Khalifa, D., & Al-Ziftawi, N. (2023). Efficacy and tolerability of sulforaphane in the therapeutic management of cancers: A systematic review of randomized controlled trials. Frontiers in Oncology, 13, 1251895. https://doi.org/10.3389/fonc.2023.1251895

41.  Hahm, E. R., & Lee, H. J. (2012). Withaferin A-induced apoptosis in human breast cancer cells. PLoS ONE, 7(8), e23354. https://doi.org/10.1371/journal.pone.0023354

42.  Khan, S., & Zubair, H. (2022). Sulforaphane as a potential remedy against cancer. Journal of Food Biochemistry, 46(10), e13886. https://doi.org/10.1111/jfbc.13886

43.  Ghafouri-Fard, S., & Taheri, M. (2021). Emerging impact of quercetin in the treatment of prostate cancer. Journal of Cellular Physiology, 236(4), 2842–2853. https://doi.org/10.1002/jcp.30051

44.  Elgar, K., & Smith, M. (2021). Sulforaphane, 3,3'-diindolylmethane and indole-3-carbinol: A review of clinical use and efficacy. Nutritional Medicine, 3(2), 1–10. https://doi.org/10.1016/j.nutmed.2021.100013

45.  Reyes-Farias, M., & González, M. (2019). The anti-cancer effect of quercetin: Molecular implications and therapeutic potential. International Journal of Molecular Sciences, 20(13), 3177. https://doi.org/10.3390/ijms20133177

 

 

 

Related Images:



Recent Images



Optimizing Patient Outcomes Through Evolving Roles in Pharmacy Practice: A Review of Current Trends and Future Directions
Design and Evaluation of Mucoadhesive Buccal Tablets of Loratadine Using Manila Tamarind Seed Powder
A  Herbal Soap Incorporating Orange Peel Powder: Formulation and Therapeutic Evaluation
Enhanced Topical Therapeutics: A Review on Development and Evaluation of Innovative Emulgel Formulations
AI and The Future of Drug Discovery: From Innovation to Implementation
Evidence-Based Management of Urinary Tract Infections: Balancing Efficacy, Safety, and Antimicrobial Stewardship
Medication Used in Pregnancy
Antipsychotic Medications and Patient Safety: A Systematic Analysis of Adverse Drug Reactions Across Drug Classes
Hysterectomy and Cardiometabolic Risk: A Comprehensive Review
Design and Implementation of a Digital Pharmacovigilance Support Platform: Interaction Detection, ADR Monitoring, and Reporting

Tags


Recomonded Articles:

Author(s): Pravin V. Gomase; R. R. Patil; Sunil P. Pawar

DOI: NA         Access: Open Access Read More

Author(s): S. Sathya, Karthiga. D, Lokesh. S, Sabari Manikandan, V. R. Rajeswari

DOI: https://doi.org/10.71431/IJRPAS.2025.4105         Access: Open Access Read More

Author(s): Jayesh M. Rajput

DOI:         Access: Open Access Read More

Author(s): Nikhil Ashok Chaudhari*; Pavan Manrang Chaudhari; Madhuri Machindra Bhutekar; Vaibhav Sunil Borse.

DOI: https://doi.org/10.71431/IJRPAS.2025.4415         Access: Open Access Read More

Author(s): Ranjit Babaso Thavare1*; Suraj Navnath Waghmode 2; Poornima Santoshkumar Toshniwal 3;Piyush Chandrakant Shelar4;Dr. Sudarshan Narayan Nagarale5

DOI:         Access: Open Access Read More

Author(s): Priyanka V. Pawar; Maaz A. Shaikh; Trupti P. Sali; N. Salunke; Devyani V. Salunke; Neha Jaiswal.

DOI:         Access: Open Access Read More

Author(s): Patel Savda Sajid; Mahek Gani Deshmukh*

DOI: https://doi.org/10.71431/IJRPAS.2025.4213         Access: Open Access Read More

Author(s): Ms. Sakshi Gunjarge*, Mr. Gopal Lohiya, Dr. Kranti Satpute

DOI: https://doi.org/10.71431/IJRPAS.2025.4102         Access: Open Access Read More

Author(s): Mr. Pawar Jaydeep*,;Mr. Yalse Manoj; Sonwane Sumit

DOI: https://doi.org/10.71431/IJRPAS.2025.4211         Access: Open Access Read More

Author(s): A. A. Shaikh; P. S. Patil; Shaikh Majid; Aejaz Ahmed; Patel Siddik.

DOI:         Access: Open Access Read More

Author(s): Zaid Memon*; Md. shahnawaz; Mo. Anas Fariyad Hussain;

DOI: https://doi.org/10.71431/IJRPAS.2025.4214         Access: Open Access Read More

Author(s): Aarti A. Varne;* Rushikesh Mane; Bhushan Patil; Prathmesh Patil; Shekhar Nalawade

DOI:         Access: Open Access Read More

Author(s): Della Rose, Devaprabha P S, Gilfred Antony K, Jinu K P, Muhamad Ashif P S, Lincy Joseph* and Mathew George

DOI:         Access: Open Access Read More

Author(s): Fadilullahi Opeyemi Ibiyemi*; Ismail Kolawole Odetayo

DOI: https://doi.org/10.71431/IJRPAS.2025.4806         Access: Open Access Read More

Author(s): Md Faiyaz1, Dr.Yogesh Chand Yadav2, Dr.Pushpendra Kumar3, Kajal varshney4, Ujjwal5, Mrs.Alisha Singh6

DOI: DOI: https://doi.org/10.71431/IJRPAS.2025.41009         Access: Open Access Read More

Author(s): Rohit Shivcharan Patil1*, Dr Jitendra Bhalchandra Kandale2

DOI: https://doi.org/10.71431/IJRPAS.2025.41008         Access: Open Access Read More