1. Yang,
J., Cao, Y., Sun, J., Leng, Q., He, J., & Shen, Y. (2010). Curcumin reduces
the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells. Medical
Oncology, 27(4), 1114-1118.
2. Zhao,
J., Chang, S., Han, Y., & Yang, J. (2017). Curcumin suppresses the
proliferation of gastric cancer cells by downregulating H19. Oncology
Letters, 12(5), 3867-3874.
3. Mukhopadhyay,
A., Bueso-Ramos, C., Chatterjee, D., Pantazis, P., & Aggarwal, B. B.
(2001). Curcumin (diferuloylmethane) down-regulates the constitutive activation
of nuclear factor-κB and IκBα kinase in human multiple myeloma cells, leading
to suppression of proliferation and induction of apoptosis. Blood, 101(3),
1053-1062.
4. Li,
L., Li, W. F., Zhang, W., Hall, T., & Zhang, X. (2015). Genistein induces
apoptosis by stabilizing intracellular p53 protein through an APE1-mediated
pathway. Biochemical Pharmacology, 98(3), 420-429.
5. Yang,
J., Cao, Y., Sun, J., Leng, Q., He, J., & Shen, Y. (2010). (Same as
#1) — cited again in context of curcumin-Bcl-2-miR regulation. Medical
Oncology, 27(4), 1114-1118.
6. Chen,
H. W., Huang, H. C., & others. (1998). Effect of curcumin on cell cycle
progression and apoptosis in vascular smooth muscle cells. British Journal
of Pharmacology.
7. Li,
X., Zhao, Y., & others. (2017). Curcumin causes the growth arrest and
apoptosis of B cell lymphoma by downregulation of egr-1, c-myc, bcl-XL, NF-κB,
and p53. Journal of Cell Biochemistry, 71(4),
8.
Chen, R., Xu, Z., Gu, J., Zhang, P.,
& others. (2007). Curcumin reduces mitomycin C resistance in breast cancer
stem cells by regulating Bcl-2 family-mediated apoptosis. Cancer Cell
International, 17, Article 28.
9. Xiong,
W., Mo, C., & others. (2007). Curcumin down-regulates Ets-1 and Bcl-2
expression in human endometrial carcinoma HEC-1-A cells. Gynecologic
Oncology, 101(2), 441-448.
10. Jing,
Y., Zhou, X., Qiu, W., Wang, S., & others. (2021). Chemoprophylaxis effect
of EGCG on the recurrence of colorectal cancer: a systematic review and
meta-analysis. Journal of Cancer Prevention,
11.
McCubrey, J. A., Steelman,
L. S., Chappell, W. H., Abrams, S. L., & others. (2017). Effects of
resveratrol, curcumin, berberine, and other natural products on cancer gene
therapy. Pharmacological Reports, 69(5), 887–905.
12.
Goh, Y. X., & others.
(2022). Genistein: A review on its anti-inflammatory properties. Frontiers
in Pharmacology, 13, 820969. https://doi.org/10.3389/fphar.2022.820969
13.
Kumar, G., & others.
(2024). Transforming cancer treatment: The potential of nutraceuticals and
nanocarriers. Pharmacological Research, 179, 106249. https://doi.org/10.1016/j.phrs.2022.106249
14.
Sailo, B. L., & others.
(2024). Harnessing sulforaphane potential as a chemosensitizing agent in cancer
therapy. Cancers, 16(2), 244. https://doi.org/10.3390/cancers16020244
15.
Debnath, I., & others.
(2025). Therapeutic potential of natural compounds in targeting cancer stem
cells. Current Medicinal Chemistry, 32(1), 1–20. https://doi.org/10.2174/0929867327666211217112111
16.
Li, D., & others.
(2024). Advances in natural products modulating autophagy in cancer therapy. The
FASEB Journal, 38(5), e14909. https://doi.org/10.1096/fj.202401409R
17.
Atuahene, D., & others.
(2025). Dietary targeting of cancer pathways: Role of bioactive compounds. Current
Opinion in Food Science, 45, 100825. https://doi.org/10.1016/j.cofs.2022.100825
18.
Wang, Q., & others.
(2024). Dietary isothiocyanates and anticancer agents: Withaferin A and
sulforaphane. Nutrients, 13(11), 3962. https://doi.org/10.3390/nu13113962
19.
Kaloni, D., & others.
(2023). BCL-2 protein family: Attractive targets for cancer therapy. Cancer
Medicine, 12(1), 1–13. https://doi.org/10.1002/mco2.582
20.
Fu, X., & others.
(2022). BRCA1 and breast cancer: Molecular mechanisms and therapeutic
strategies. Frontiers in Cell and Developmental Biology, 10, 813457. https://doi.org/10.3389/fcell.2022.813457
21.
Anwar, M. J., & others.
(2023). Anti-cancer perspectives of resveratrol. Critical Reviews in Food
Science and Nutrition, 63(1), 1–17. https://doi.org/10.1080/10408398.2023.2265686
22.
Royston, K. J. (2018). Combinatorial
withaferin A and sulforaphane and their synergistic effects in breast cancer
treatment. University of Alabama at Birmingham. https://digitalcommons.library.uab.edu/etd-collection/2869/
23.
Talib, W. H., & others.
(2024). Natural products and altered metabolism in cancer. International
Journal of Molecular Sciences, 25(17), 9593. https://doi.org/10.3390/ijms25179593
24.
Nan, Y., & others.
(2023). The function of natural compounds in important anticancer pathways. Frontiers
in Oncology, 12, 1049888. https://doi.org/10.3389/fonc.2022.1049888
25.
Tewari, D., & others.
(2022). Targeting transforming growth factor-β signaling for cancer therapy. Clinical
and Translational Medicine, 12(1), e795. https://doi.org/10.1002/ctm2.795
26.
Tewari, D., & others.
(2022). Targeting transforming growth factor-β signaling for cancer therapy. Clinical
and Translational Medicine, 12(1), e795. https://doi.org/10.1002/ctm2.795
27.
Ren, J., & others.
(2025). Cancer chemoprevention: Signaling pathways and natural compounds. Seminars
in Cancer Biology, 79, 1–12. https://doi.org/10.1016/j.semcancer.2022.11.001
28.
Li, D., & others.
(2024). Natural anti-cancer products: Insights from herbal medicine. Chinese
Medicine, 16(1), 1–14. https://doi.org/10.1186/s13020-025-01124-y
29.
Vogler, M., & others.
(2025). The BCL2 family: From apoptosis mechanisms to new therapeutic
strategies. Seminars in Cancer Biology, 80, 1–12. https://doi.org/10.1016/j.semcancer.2022.11.001
30.
Singh, S. R., & others.
(2025). Exploring the genetic orchestra of cancer: The interplay between
oncogenes and tumor suppressor genes. Cancers, 17(7), 1082. https://doi.org/10.3390/cancers17071082
31.
Cui, D., & others.
(2025). Natural anti-cancer products: Insights from herbal medicine. Chinese
Medicine, 16(1), 1–14. https://doi.org/10.1186/s13020-025-01124-y
32.
McCubrey, J. A., &
others. (2017). Effects of resveratrol, curcumin, berberine, and other natural
products on cancer gene therapy. Pharmacological Reports, 69(5),
887–905. https://doi.org/10.1016/j.pharep.2017.05.003
33.
Goh, Y. X., & others.
(2022). Genistein: A review on its anti-inflammatory properties. Frontiers
in Pharmacology, 13, 820969. https://doi.org/10.3389/fphar.2022.820969
34.
Kumar, G., & others.
(2024). Transforming cancer treatment: The potential of nutraceuticals and
nanocarriers. Pharmacological Research, 179, 106249. https://doi.org/10.1016/j.phrs.2022.106249
35.
Sailo, B. L., & others.
(2024). Harnessing sulforaphane potential as a chemosensitizing agent in cancer
therapy. Cancers, 16(2), 244. https://doi.org/10.3390/cancers16020244
36. Wu,
Y., Zhang, P., & Li, X. (2024). A specific super-enhancer actuated by
berberine regulates the EGFR-mediated RAS–RAF1–MEK1/2–ERK1/2 pathway to induce
autophagy in nasopharyngeal carcinoma cells. Cellular and Molecular Biology
Letters, 29(1), 1–13. https://doi.org/10.1186/s11658-024-00607-4
37. Fujiki,
H., & Suganuma, M. (2018). Cancer prevention with green tea and its
principal constituent, epigallocatechin gallate. Molecules, 23(1),
1–15. https://doi.org/10.3390/molecules23010096
38. Kumar,
S., & Pandey, A. K. (2023). Withaferin A: A pleiotropic anticancer agent
from the Indian medicinal plant Withania somnifera. Pharmacological
Research, 183, 106348. https://doi.org/10.1016/j.phrs.2022.106348
39. Lotfi,
N., & Alizadeh, J. (2023). The potential anti-cancer effects of quercetin
on blood, lung, and prostate cancers. Pharmacological Reports, 75(1),
1–10. https://doi.org/10.1016/j.pharep.2022.10.004
40. El-Khalifa,
D., & Al-Ziftawi, N. (2023). Efficacy and tolerability of sulforaphane in
the therapeutic management of cancers: A systematic review of randomized
controlled trials. Frontiers in Oncology, 13, 1251895. https://doi.org/10.3389/fonc.2023.1251895
41. Hahm,
E. R., & Lee, H. J. (2012). Withaferin A-induced apoptosis in human breast
cancer cells. PLoS ONE, 7(8), e23354.
https://doi.org/10.1371/journal.pone.0023354
42. Khan,
S., & Zubair, H. (2022). Sulforaphane as a potential remedy against cancer.
Journal of Food Biochemistry, 46(10), e13886. https://doi.org/10.1111/jfbc.13886
43. Ghafouri-Fard,
S., & Taheri, M. (2021). Emerging impact of quercetin in the treatment of prostate
cancer. Journal of Cellular Physiology, 236(4), 2842–2853. https://doi.org/10.1002/jcp.30051
44. Elgar,
K., & Smith, M. (2021). Sulforaphane, 3,3'-diindolylmethane and
indole-3-carbinol: A review of clinical use and efficacy. Nutritional
Medicine, 3(2), 1–10. https://doi.org/10.1016/j.nutmed.2021.100013
45. Reyes-Farias,
M., & González, M. (2019). The anti-cancer effect of quercetin: Molecular
implications and therapeutic potential. International Journal of Molecular
Sciences, 20(13), 3177. https://doi.org/10.3390/ijms20133177