ABSTRACT:
Drug development and delivery have shown encouraging advances because to nanotechnology. Specifically, the use of nanoparticles in cancer treatment and diagnostics has advanced to the point where they can identify a single cancer cell and target it to deliver a payload that will treat that diseased cell.
These days, nanoparticles, or NPs, are used in many different scientific fields. It has been often stated in recent years that NPs are important to modern medicine. They have been examined for a variety of therapeutic uses, including contrast agents in imaging, medication transporters, and gene transfer to tumours. The use of nanoparticles in nanomedicine aids in the detection and management of a number of illnesses, including cancer. Because of their high surface to volume ratio, which is a unique feature of nanomedicine, tiny biomolecules including DNA, RNA, medications, proteins, and other molecules may be tied, absorbed, and transported to specific sites, increasing the effectiveness of therapeutic agents. The use of nanomaterials can extend the duration that medications and contrasting agents circulate in the brain, which presents a great chance to improve the treatment of glioblastomas, the most aggressive kind of brain cancer. However, prior to the ultimate clinical translation of nanoparticles, any undesirable side effects and toxicity problems must be taken into account. The following section of the article covered the drug and its commercially available formulation.
Cite this article:
Shaikh Md Moiz*, Shaikh Imran Kalam, Dr.G.J.Khan, Aman Shaikh, M Sohil M Shabbir. The Role of Nanotechnology in Treatment of Cancer.
IJRPAS; 3(6): 64-72.
1. Naeem M, Khalil AAK, Li J, Nasir A, Khan A,
et al. A review article of Nanotechnology, A Tool for Diagnostics and Treatment
of Cancer. Bentham Science Publishers. 2021:1360–1376.
doi:10.2174/1568026621666210701144124. Retrieved on 2023 Nov 25.
2. Dolati S, Ahmadi M, Baghbanzhadeh A, Asadi
M, Fotouhi A, Aghebati-Maleki A. Nanoparticles and cancer therapy: Perspectives
for application of nanoparticles in the treatment of cancers. J Cell Physiol.
2019;1–11. doi:10.1002/jcp.29126. Retrieved on 2023 Nov 25.
3. Wantong S, Huang L, Anselmo AC.
Nanotechnology intervention of the microbiome for cancer therapy. Springer
Nature. 2019. Accessed on 2023 Nov 25.
4. Singh A, Singh VK, Singh MP, Chaturvedi VK.
Cancer Nanotechnology: A New Revolution for Cancer Diagnosis and Therapy. Bentham
Science Publishers. 2019;20:416-429. doi:10.2174/1389200219666180918111528.
Retrieved on 2023 Nov 25.
5. Chen X, Deng L, Shen Z, Lau J, Tang W, Fan
W. Emerging blood–brain-barrier-crossing nanotechnology for brain cancer
theranostics. Chem Soc Rev. 2019. doi:10.1039/c8cs00805a. Retrieved on 2023 Nov
25.
6. Karikachery AR, Thipe VC, Srisrimal D,
Mohandoss DKD, Khoobchandani M, Katti KK. New Approaches in Breast Cancer
Therapy Through Green Nanotechnology and NanoAyurvedic Medicine – Pre-Clinical
and Pilot Human Clinical Investigations. Int J Nanomedicin. 2020:181-197.
doi:10.2147/UN.S219042. Retrieved on 2023 Nov 26.
7. Jov̇cevska I, Zottel A, Videtiʇc Paska A.
Nanotechnology Meets Oncology: Nanomaterials in Brain Cancer Research,
Diagnosis and Therapy. Materials (Basel). 2019. doi:10.3390/ma12101588.
Retrieved on 2023 Nov 26.
8. Gupta G, Singh H, Kaur S, Dhanjal DS, Mehta
M, Sharma P. Emerging trends in the novel drug delivery approaches for the
treatment of lung cancer. Chem Biol Interact. 2019.
doi:10.1016/j.cbi.2019.06.033. Retrieved on 2023 Nov 26.
9. Dana H, Gharagouzloo E, Grijalvo S, Eritja
R, Logsdon CD, Mahmoodi Chalbatani G. Small interfering RNAs (siRNAs) in cancer
therapy: a nano-based approach. J Nanosci Nanotechnol. 2019.
doi:10.2147/JN.S200253. Retrieved on 2023 Nov 26.
10. Kesari KK, Kamal MA, Garg N, Ruokolainen
J, Das BC, Kumar D, et al. Specific targeting cancer cells with nanoparticles
and drug delivery in cancer therapy. Semin Cancer Biol. 2019.
doi:10.1016/j.semcancer.2019.11.002. Retrieved on 2023 Nov 27.
11. Dong P, Hussein Y, Rakesh KP, Manukumar
HM, Sumathi S, Karthik CS, et al. Innovative nano-carriers in anticancer drug
delivery-a comprehensive review. Bioorg Chem. 2019.
doi:10.1016/j.bioorg.2019.01.019. Retrieved on 2023 Nov 27.
12. Ferrari M, Wolfram J. Clinical Cancer
Nanomedicine. Elsevier 2019. doi:S1748013218306388. Retrieved on 2023 Nov 28.
13. Barani M, Rahdar A, Bilal M, Mukhtar M.
Nanomaterials for Diagnosis and Treatment of Brain Cancer. Chemosensors. 2020.
doi:10.3390/chemosensors8040117. Retrieved on 2023 Nov 28.
14. Sanna V, Pala N, Sechi M. Targeted therapy
using nanotechnology: focus on cancer. Int J Nanomedicine. 2014.
doi:10.2147/UN.S36654. Retrieved on 2023 Nov 28.
15. Rao J, Nel AE, Lanza GM, Bradbury MS,
Hartshorn CM. Nanotechnology Strategies To Advance Outcomes in Clinical Cancer
Care. ACS Nano. 2018. doi:10.1021/acsnano.7b05108. Retrieved on 2023 Nov 28.
16. Santos MS, Oliveira PJ, Cardoso S, Correia
S, Santos RX, Carvalho C. Doxorubicin: The Good, the Bad and the Ugly Effect.
2019. doi:10.2174/092986709788803312. Retrieved on 2023 Nov 29.
17. Dong Z, Yang R, Wang S, Zhang D.
Paclitaxel: new uses for an old drug. Dove Medical Press. 2014.
doi:10.2147/DDDT56801. Retrieved on 2023 Nov 29.
18. Al-Mosawi K, Al-Mosawe HAS, Al-Janabi
AAHS. Tamoxifen: From Anti-cancer to Antifungal Drug. Int J Med Rev.
2019;6(3):88-91. doi:10.29252/ijmr060304. Retrieved on 2023 Nov 30.
19. Al-Janabi AAHS, Al-Mosawe HAS, Al-Mosawi
K, et al. Tamoxifen: From Anti-cancer to Antifungal Drug. Microbiology, College
of Medicine, University of Karbala. 2019 May 5 [Accepted 2019 Aug 28; Published
online 2019 Sep 16].