ABSTRACT:
Drugs are an essential commercial good in our way of life. Major factors in medication failure during clinical development include poor drug solubility, permeability, bioavailability, dissolving rate, hygroscopicity, tablet ability, compressibility, and stability. Numerous techniques, such as salt formation, nano-formulations, co-solvency, complexation with cyclodextrins and surfactants, solid dispersions, coamorphous formulations, cocrystallization, nanococrystallization, etc., can be developed to address the drawbacks of pharmaceuticals. The technique that offers the best possibility of improving APIs' physical and chemical properties while maintaining their chemical composition is called nanococrystallization. Nanococrystallization provides a versatile method for preserving poorly soluble pharmaceuticals with the added benefit of a carrier-free delivery route. In this article, we offer a thorough examination of nanococrystals. These also include a comparison between cocrystals and nanocrystals, as well as information on how nanocrystals are formed, their benefits, and characterisation methods.
Cite this article:
Mansoori Safwan Salim, Prof. Rehan Deshmuhk, Dr. G.J. Khan, Shaikh Amaan, Sayyed Ahamad Sayyed Kaleem , Hamza Iliyas Amliwala. Pharmaceutical Nano-Cocrystal: A Comprehensive Review .IJRPAS, 2024; 3(1): 01-07.
1. Lipinski CA. Am Pharm Rev, 2002; 5(3):82-85.
2. Berry DJ, Steed JW. Advanced drug delivery reviews, 2017; 117:3-24.
3. Pi J, Wang S, Li W, Kebebe D, Zhang Y, Zhang B, et al. Asian journal of pharmaceutical sciences, 2019; 14(2):154-164.
4. Tan J, Liu J, Ran L. Crystals. 2021; 11(5):463.
5. Spitzer D, Risse B, Schnell F, Pichot V, Klaumünzer M, Schaefer MR. Scientific Reports. 2014;
4(1):1-6.
6. Peltonen L. Advanced drug delivery reviews. 2018; 131:101-15.
7. Gao L, Zhang D, Chen M. Journal of Nanoparticle Research, 2008; 10(5):845-862.
8. Katteboinaa S, Chandrasekhar PV, Balaji S. International journal of pharmtech research, 2009; 1(3):682-694.
9. Keck CM, Müller RH. European journal of pharmaceutics and biopharmaceutics, 2006; 62(1):3-16.
10. Huang Z, Staufenbiel S, Bodmeier R. Pharmaceutical Research, 2022; 1-3.
11. Ibrahim RK, Hayyan M, AlSaadi MA, Hayyan A, Ibrahim S. Environmental Science and Pollution Research, 2016; 23(14):13754-13788.
12. Trask AV, Jones W. Organic solid state reactions, 2005; 41-70.
13. Jones W, Motherwell WD, Trask AV. MRS bulletin, 2006; 31(11):875-879.
14. Emami S, Siahi-Shadbad M, Adibkia K, BarzegarJalali M. BioImpacts: BI. 2018; 8(4):305.
15. Höhne GW, Hemminger WF, Flammersheim HJ, Höhne GW, Hemminger WF, Flammersheim HJ. Differential scanning calorimetry, 2003:31-63.
16. C Nagarwal R, Kumar R, Dhanawat M, Das N, K Pandit J. Current drug delivery,2011; 8(4):398-406.
17. Ricarte RG, Lodge TP, Hillmyer MA. Molecular pharmaceutics, 2015; 12(3):983-990.
18. Pinon AC, Rossini AJ, Widdifield CM, Gajan D, Emsley L. Molecular pharmaceutics, 2015; 12(11):4146-4153.
19. Shegokar R, Singh KK. International journal of pharmaceutics, 2011; 421(2):341-352.
20. pharmaceutics, 2011; 421(2):341-352. 20. Kiyonga EM, Kekani LN, Chidziwa TV, Kahwenga KD, Bronkhorst E, Milne M, et al. Crystals, 2022; 12(7):926
21. Junyaprasert VB, Morakul B. Asian journal of pharmaceutical sciences, 2015; 10(1):13-23.
22. Shinde AJ, Harinath N. Formulation, development and characterization of Simvastatin nanoparticles by solvent displacement method. Der Pharmacia Lettre. 2014;6(2):145-55.